Теорема об аддитивной группе многочленов

Теорема. Пусть $P\left[x\right]$ — множество многочленов над полем от переменной $x,$ $+$ — операция сложения многочленов. Тогда $\left( P\left[x\right],+ \right)$ — абелева группа.

Очевидно, $P\left[x\right]\neq \varnothing,$ $+$ — БАО. Проверим выполнение аксиом абелевой группы:

  1. Ассоциативность операции: $$\forall u\left(x\right),v\left(x\right),w\left(x\right) \in P\left[x\right]: \left(u\left(x\right)+v\left(x\right)\right)+w\left(x\right)=u\left(x\right)+\left(v\left(x\right)+w\left(x\right)\right).$$ Как известно, операция сложения многочленов обладает ассоциативностью.
  2. Коммутативность операции: $$\forall u\left(x\right),v\left(x\right) \in P\left[x\right]:u\left(x\right)+v\left(x\right)=v\left(x\right)+u\left(x\right).$$ Сложение многочленов также обладает и коммутативностью.
  3. Покажем что существует нейтральный элемент по сложению, а именно: $$\exists e \in P\left[x\right]\; \forall u\left(x\right) \in P\left[x\right]: u\left(x\right)+e=e+u\left(x\right)=u\left(x\right).$$ Таким элементом выступает число $0,$ которое можно рассматривать как одночлен, или как многочлен с коэффициентами равными нулю. Из определения сложения многочленов, сложение с ним не изменит коэффициенты исходного многочлена, т.к. $0$ является нейтральным элементом для сложения чисел.
  4. Наконец, покажем существование противоположного элемента: $$\forall u\left(x\right) \in P\left[x\right]\; \exists -u\left(x\right)\in P\left[x\right]: u\left(x\right)+\left(-u\left(x\right)\right)=-u\left(x\right)+u\left(x\right)=e=0.$$ Получить такой элемент для любого многочлена можно просто заменив все его коэффициенты на противоположные (простыми словами — поменяв их знаки). Суммой таких многочленов, в силу противоположности их коэффициентов как чисел, будет многочлен, все коэффициенты которого равны нулю, или просто $0.$

Итак, все аксиомы выполняются, следовательно $\left( P\left[x\right],+ \right)$ — абелева группа.

Примеры решения задач

Читателю предлагается решить эти примеры и сравнить своё решение с приведённым.

  1. Является ли $\left( P^3\left[x\right],+ \right),$ где $P^3\left[x\right]$ — множество многочленов третьей степени, абелевой группой?
    Решение

    Очевидно, операция сложения многочленов сохраняет все свои свойства на этом множестве, а нейтральный и противоположный элементы ему принадлежат $\Rightarrow$ все аксиомы выполняются. Также, $+$ остается БАО, а $P^3\left[x\right]\neq \varnothing.$ Значит, ответ положительный.

  2. Является ли $\left( P^3\left[x\right],\cdot \right),$ где $P^3\left[x\right]$ — множество многочленов третьей степени, а $\cdot$ — операция умножения многочленов, абелевой группой?
    Решение

    Аналогично первому примеру, $P^3\left[x\right]\neq \varnothing.$ Однако, в случае умножения, произведением двух многочленов $3$-й степени будет многочлен $6$-й степени (по лемме о степени произведения), что выходит за границы рассматриваемого множества. Значит, $\left( P^3\left[x\right],\cdot \right)$ — не абелева группа.

Смотрите также

  1. А.Г. Курош Курс высшей алгебры. — Издание девятое. — Москва: Наука, 1968. — 431с. (c. 132-134)
  2. К.Д. Фадеев Лекции по алгебре. — Москва: Наука, 1984. — 416с. (c. 54-55)
  3. А.И. Кострикин Введение в алгебру. Основы алгебры. — Москва: Физматлит, 1994. -320с. (с. 211-212)
  4. Белозёров Г.С. Конспект лекций.

Аддитивная группа многочленов

Этот тест призван проверить Ваши знания по теме «Аддитивная группа многочленов».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *