Евклидово пространство

Определение 1. Пусть дано вещественное линейное пространство $E$. Оно называется евклидовым, если на нем задано отображение из каждой пары векторов в соответствующее ей вещественное число. Назовем это отображение скалярным произведением. Отображение должно удолетворять следующим аксиомам:

  1. $\left(x, y \right) = \left(y, x \right),$
  2. $\left(\lambda x, y \right) = \lambda \left(x, y \right),$
  3. $\left(x + y, z \right) = \left(x, z\right) + \left(y, z\right),$
  4. $\left(x, x \right) > 0 \quad при \quad x \not= 0; (x, x) = 0 \quad при \quad x = 0; \forall x, y, z \in E, \forall \lambda \in R.$

Отсюда можно получить ряд следствий:

  1. $\left(x, \lambda y\right) = \lambda \left(x, y \right)$,
  2. $\left(x, y + z \right) = \left(x, y \right) + \left(x, z \right)$,
  3. $\left(x {-} z, y \right) = \left(x, y \right){-}\left(z, y \right)$,
  4. $\left(x, y {-} z \right) = \left(x, y \right){-}\left(x, z \right)$,
  5. $\forall a = \sum\limits_{j = 1}^m \alpha_j x_j$, $b = \sum\limits_{i = 1}^n \beta_i y_i: \\ \left(x, y\right) = \left(\sum\limits_{j = 1}^m \alpha_j x_j, b = \sum\limits_{i = 1}^n \beta_i y_i\right) = \sum\limits_{j = 1}^m \sum\limits_{i = 1}^n \alpha_j \beta_i \left(x_j, y_i \right)$

Любое n-мерное линейное пространство можно превратить в евклидово(с помощью определения в нем скалярного произведения). В n-мерном линейном пространстве скалярное произведение можно задать различными способами.

Например, возьмем в произвольном вещественном пространстве $G$ его некоторый базис $g = {e_1, e_2, \cdots, e_n}$ и два любых вектора $x$, $y$. Допустим, $$x = \sum\limits_{i = 1}^n \alpha_i e_i \quad y = \sum\limits_{i = 1}^n \beta_i e_i$$

Теперь можно ввести скалярное произведение: $\left(x, y\right) = \sum\limits_{i = 1}^n \alpha_i \beta_i.$

Любое подпространство из $E$ может быть Евклидовым, если в нем сохраняется скалярное произведение, определенное в $E$.

Определение 2. Пусть дан вектор $x$, принадлежащий евклидову пространству. Если $(x, x) = 1$, то этот вектор называется нормированным. Ненулевой вектор можно нормировать, если умножить его на произвольное число $\lambda$: $$\left(\lambda x, \lambda x \right) = \lambda^2 \left(x, x\right) = 1.$$

Значит, нормирующий множитель $\left(\lambda \right) = \left( x, x \right)^{{-}\frac{1}2}$

Определение 3. Пусть вектор $x$ принадлежит евклидову пространству $E$. Длиной вектора $x$ назовем число $\mid x \mid = + \sqrt{\left(x, x\right)}$, где $x \in R.$ Данное определение имеет свойства длины:

  1. $\mid 0 \mid = 0.$
  2. $\mid x \mid > 0, если x \not= 0.$
  3. $\mid \lambda \cdot x \mid = {\mid \lambda \mid}{\mid x \mid}$ — свойство абсолютной однородности.

Определение 4. Пусть даны векторы $x, y$, принадлежащие евклидову пространствую. Тогда $ \displaystyle \cos \left(x, y \right) = \frac{ \left(x, x \right)}{{ \mid x \mid}{ \cdot}{ \mid y \mid}}, 0 \leqslant \left(x, y \right) \leqslant \pi$ — косинус угла между этими векторами

Рассмотрим применимость школьной геометрии к геометрии евклидова пространства. Пусть заданы два вектора $x, y \in E; x \not= 0, y \not= 0$ — две стороны треугольника. Тогда разность $y-x$ — третья сторона. С помощью формулы для угла можно вычислить квадрат третьей стороны: $${\mid y-x\mid}^2 = \left(y-x, y-x \right) = {\mid y \mid}^2+{\mid x \mid}^2 {-} 2 \left(y, x\right) = {\mid y \mid}^2+{\mid x \mid}^2 {-} \mid y \mid \mid x \mid \cos \left(b, a\right)$$

Получили теорему косинусов. Разумеется, если $y \bot x$, то треугольник является прямоугольным. Также, из последней формулы можно получить теорему Пифагора: ${\mid y-x\mid}^2 = {\mid y \mid}^2+{\mid x \mid}^2.$ Из той же формулы получаем отношение длин сторон треугольника, если оценивать множитель $cos(b^a)$ сверху: $${\mid y-x\mid}^2 \leqslant {\mid y \mid}^2+{\mid x \mid}^2 {+} 2{\mid y \mid}{\mid x \mid} = \left({\mid y \mid}+{\mid x \mid}\right)^2 \Rightarrow \mid y-x \mid \leqslant {\mid y \mid}+{\mid x \mid}.$$

И снизу: $${\mid y-x\mid}^2 \leqslant {\mid y \mid}^2+{\mid x \mid}^2 {-} 2{\mid y \mid}{\mid x \mid} = \left({\mid y \mid}-{\mid x \mid}\right)^2 \Rightarrow \mid y-x \mid \leqslant {\mid y \mid}-{\mid x \mid}.$$

Литература

  1. Электронный конспект по линейной алгебре Белозерова Г.С.
  2. Воеводин В.В. Линейная алгебра.Стр. 88-90
  3. Курош А.Г. Курс высшей алгебры.Стр. 211-212

Евклидово пространство: 1 комментарий

  1. Объем работы крайне недостаточный. Если нечего дополнить в этой части, то можно взять еще один или несколько близких разделов.
    Тесты и примеры в курсовой обязательны. Без этого положительную оценку не получить. Если забыли как их делать, посмотрите видео.

    По ссылке на Куроша открывается Воеводин. Не такие они друзья, чтобы прямо брататься :) Исправьте, пожалуйста.

    Вы пишите «определение имеет свойства длины». Само определение имеет эти свойства или определяемое понятие?

    Сделайте, пожалуйста «свойства длины» гиперссылкой, хочется убедиться, что я правильно вас понял.

    Даже если в формуле один символ, latex нужен.

    Между словами пробелы обязательны — точки или скобки их не заменяют.

    Для списка учебников у нас есть специальный класс.

    \mid это вертикальная черта с отступами с двух сторон. А Вам нужно такое — $\left| x \right|.$

    Над метками нужно еще поработать.

    Ваша творческая обработка конспекта Белозерова не пошла на пользу. Может лучше попробовать как я предлагал? Прочесть, разобраться и написать самому. А если будет плохо, то повторить?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *