М2010. Зв’язна клітинна фігура

Задача із журналу «Квант» (2006 рік, №4)

Умова

Для натуральних чисел $m$ і $n$ позначимо через $F(m,n)$ кількість всіх зв’язних клітинних фігур прямокутнику $m\times n$. Доведіть, що парність числа $F(m,n)$ збігається з парність числа $\frac{n(n+1)}{2}\cdot\frac{m(m+1)}{2}.$ (Зв’язна клітинна фігура – це така непорожня множина клітин, що з будь-якої клітини цієї множини можна пройти в будь-яку іншу клітину цієї множини по клітинах цієї множини, переходячи щоразу в сусідню по стороні клітину.)

А.Бадзян

Рішення

Припустимо, що $F(m,0) = 0.$ Зв’язні фігури в прямокутнику $m\times 1$ – це $m$ фігур з однієї клітини та смужки із двох або більше клітин. Кожна смужка визначається парою клітин – першою та останньою, тому $$F(m,1) = m + \frac{m(m-1)}{2} = \frac{m(m+1)}{2}.$$

Нехай у прямокутнику $m$ рядків та $n\gt 1$ стовпців. Позначимо через $l$ вертикальну вісь симетрії. Кожній зв’язній фігурі відповідає фігура, симетрична щодо $l,$ тому несиметричні щодо $l$ фігури розбиваються на пари, і парність $F(m,n)$ збігається з парністю кількості зв’язних фігур, симетричних щодо $l.$

Розглянемо деяку фігуру $T,$ симетричну щодо $l.$

Нехай $n$ непарне, $n =2k-1,$ $k\ge 2.$ Фігура $T$ містить хоча б одну клітину $k$-го стовпця, інакше з клітини фігури $T$ неможливо пройти по клітинам $T$ в симетричну відносно $l$ клітину, переходячи кожен раз в сусідню клітину. Зауважимо, що частина $T_{1}$ фігури $T,$ що розташована в $k$ найлівіших стовпцях, зв’язна. Дійсно, розглянемо дві клітини $x$ та $y$ фігури $T_{1}.$ Нехай $x’$ – клітина, що симетрична $x$ відносно $l,$ a $x’,z_{1},z_{2},\ldots,z_{t},y$ – послідовність клітин, що утворює шлях з $x’$ в $y$ по сусідніх клітинах фігури $T.$ Тоді, замінюючи в цьому шляху клітини, що лежать правіше $k$-го стовпця, на симетричні щодо $l,$ ми отримаємо шлях з $x$ в $y$ по сусідніх клітинах фігури $T_{1}$ (див. малюнок). Навпаки, якщо фігура $T_{1}$ розташована у прямокутнику, що складається з $k$ найлівіших



стовпців, зв’язна і містить хоча б одну клітину $k$-го стовпця, можна однозначно продовжити фігуру $T_{1}$ до зв’язної фігури $T,$ симетричної відносно $l$. Кількість зв’язних фігур у прямокутнику $m\times k$ дорівнює $F(m,k),$ серед них $F(m,k-1)$ фігур лежать у перших $k-1$ стовпцях (тобто не містить клітин $k$-го стовпця). Отже, кількість зв’язних симетричних щодо $l$ фігур у прямокутнику $m\times (2k-1)$ дорівнює $F(m,k)-F(m,k-1).$

Для парного $n = 2k,$ $k\ge 1,$ міркуючи аналогічно, встановимо взаємно однозначну відповідність між зв’язними симетричними щодо $l$ фігурами та зв’язними фігурами, що розташовані в перших $k$ стовпцях і що містять хоча б одну клітинку $k$-го стовпця. Звідси випливає, що кількість зв’язних симетричних щодо $l$ фігур у прямокутнику $m\times 2k$ дорівнює $F(m,k)-F(m,k-1).$

Отже, для $n = 2k-1$ и $n = 2k$ парність $F(m,n)$ збігається з парністю числа $F(m,k)-F(m,k-1).$

Доведемо індукцією по $n,$ що $F(m,n)$ непарно тоді і лише тоді, коли $m$ і $n$ дають залишок $1$ або $2$ при діленні на $4;$ звідси відразу випливає твердження задачі. Твердження вірне при $n = 0$ і $n = 1.$

Нехай $m$ дає залишок $0$ або $3$ при діленні на $4.$ Припустимо, що це твердження вірне для $F(m,0),F(m,1),\ldots,F(m,n-1),$ тобто ці числа парні. Якщо $n = 2k-1,$ $k\ge 2,$ або $n = 2k,$ $k\ge 1,$ то $n\gt k,$ тому $F(m,n)$ парне, так як $F(m,k)-F(m,k-1)$ парне. Нехай $m$ дає залишок $1$ або $2$ при діленні на $4.$ Припустимо, що твердження вірно для чисел $F(m,0),F(m,1),\ldots,F(m,n-1),$ тобто $F(m,s)$ непарне тоді і лише тоді, коли $s$ дає залишок від ділення $1$ або $2$ при діленні на $4.$ Тоді $F(m,s)-F(m,s-1)$ непарне тоді і лише тоді, коли $s$ непарне. Звідси випливає, що $F(m,n)$ непарне тоді і тільки тоді, коли $n = 2(2l + 1)-1 = 4l + 1$ або $n = 2(2l + 1) = 4l + 2.$

А.Бадзян

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *