Задача из журнала «Квант»(1977 №8)
Условие
На плоскости даны $n$ точек $A_{1},\ldots,A_{n}$, никакие три из которых не лежат на одной прямой. Какое наибольшее число отрезков с концами в этих точках можно провести так, чтобы не получилось ни одного треугольника с вершинами в этих точках?
Решение
Проведем максимальное число отрезков с концами в точках $A_{1},\ldots,A_{n}$. Получим некоторый граф с вершинами в этих точках. Отрезки с концами в вершинах графа будем называть ребрами графа. Оценим число ребер в нашем графе.
Назовем степенью вершины в графе число выходящих из неё ребер. Пусть $k$ — максимальная степень вершины в графе, и пусть некоторая вершина $A_{i}$ соединена с $k$ вершинами $A_{j_{1}},\ldots,A_{j_{k}}$ графа (рисунок 1).
Тогда степень любой вершины из множества $\left \{ A_{j_{1}},\ldots,A_{j_{k}} \right \}$ не превосходит $n-k$ ($n$ — число вершин графа), поскольку любые вершины из этого множества уже не могут быть соединены ребром (в нашем графе никакие три ребра не образуют треугольника — с вершинами в вершинах графа). Так как $k$ — максимальная степень вершины в графе, степень каждой из оставшихся $n-k$ вершин не превосходит $k$. Поэтому сумма степеней всех вершин графа не превосходит $$k \left(n-k \right )+ \left (n-k \right) k=2k \left (n-k\right).$$ Но легко видеть, что сумма степеней всех вершин графа равна удвоенному количеству его ребер. Следовательно, количеств ребер графа не больше $$k\left(n-k\right)\leqslant\left(\frac{k+(n-k)}{2}\right)^{2}=\frac{n^{2}}{4}.$$ Чтобы получить данное соотношение, мы воспользовались теоремами о среднем арифметическом и среднем геометрическом. Учитывая, что количество ребер графа — число целое, мы получаем, что ребер в нашем графе не больше чем $\left [ \frac{n^{2}}{4}\right]$ (здесь $\left [ x \right]$ означает целую часть числа $x$ — наибольшее целое число, не превосходящее $x$).
Укажем теперь способ построения графа без треугольников с $n$ вершинами, число ребер которого в точности равно $\left [ \frac{n^{2}}{4}\right]$.
Разобьем множество точек $A_{1},\ldots,A_{n}$ на два: $\left [ \frac{n}{2} \right ]$ точек в одном множестве и $n — \left [ \frac{n}{2} \right ]$ — в другом. Соединив все точки точки первого множества с точками второго (как на рисунке 2, где $n=5$), мы получим граф, у которого не будет ни одного треугольника с вершинами в точках $A_{1},\ldots,A_{n}$.
Число ребер в этом графе, очевидно, равно $\left [ \frac{n}{2} \right ]\left(n-\left [ \frac{n}{2} \right ]\right)$. Если $n$ — четное, то $$\left [ \frac{n}{2} \right ]\left (n-\left [ \frac{n}{2} \right ]\right)=\frac{n^{2}}{4}=\left [ \frac{n^{2}}{4} \right ].$$Если $n$ — нечетное, то $\left [ \frac{n}{2} \right ]\left(n-\left [ \frac{n}{2} \right ]\right)=$ $\frac{n-1}{2}\left(n-\frac{n-1}{2}\right)=$ $\frac{n^{2}-1}{4}=$ $\left [ \frac{n^{2}}{4}\right].$ Что и требовалось доказать.
Итак, ответ в задаче: максимальное число отрезков равно $\left [ \frac{n^{2}}{4}\right]$(этот результат в теории графов называют теоремой Турана).