М416. О максимальном количестве ребер в таком графе, что никакие три ребра не создают треугольник

Задача из журнала «Квант»(1977 №8)

Условие

На плоскости даны $n$ точек $A_{1},\ldots,A_{n}$, никакие три из которых не лежат на одной прямой. Какое наибольшее число отрезков с концами в этих точках можно провести так, чтобы не получилось ни одного треугольника с вершинами в этих точках?

Решение

Проведем максимальное число отрезков с концами в точках $A_{1},\ldots,A_{n}$. Получим некоторый граф с вершинами в этих точках. Отрезки с концами в вершинах графа будем называть ребрами графа. Оценим число ребер в нашем графе.

Назовем степенью вершины в графе число выходящих из неё ребер. Пусть $k$ — максимальная степень вершины в графе, и пусть некоторая вершина $A_{i}$ соединена с $k$ вершинами $A_{j_{1}},\ldots,A_{j_{k}}$ графа (рисунок 1).

kvant1

Тогда степень любой вершины из множества $\left \{ A_{j_{1}},\ldots,A_{j_{k}} \right \}$ не превосходит $n-k$ ($n$ — число вершин графа), поскольку любые вершины из этого множества уже не могут быть соединены ребром (в нашем графе никакие три ребра не образуют треугольника — с вершинами в вершинах графа). Так как $k$ — максимальная степень вершины в графе, степень каждой из оставшихся $n-k$ вершин не превосходит $k$. Поэтому сумма степеней всех вершин графа не превосходит $$k \left(n-k \right )+ \left (n-k \right) k=2k \left (n-k\right).$$ Но легко видеть, что сумма степеней всех вершин графа равна удвоенному количеству его ребер. Следовательно, количеств ребер графа не больше $$k\left(n-k\right)\leqslant\left(\frac{k+(n-k)}{2}\right)^{2}=\frac{n^{2}}{4}.$$ Чтобы получить данное соотношение, мы воспользовались теоремами о среднем арифметическом и среднем геометрическом. Учитывая, что количество ребер графа — число целое, мы получаем, что ребер в нашем графе не больше чем $\left [ \frac{n^{2}}{4}\right]$ (здесь $\left [ x \right]$ означает целую часть числа $x$ — наибольшее целое число, не превосходящее $x$).

Укажем теперь способ построения графа без треугольников с $n$ вершинами, число ребер которого в точности равно $\left [ \frac{n^{2}}{4}\right]$.

Разобьем множество точек $A_{1},\ldots,A_{n}$ на два: $\left [ \frac{n}{2} \right ]$ точек в одном множестве и $n — \left [ \frac{n}{2} \right ]$ — в другом. Соединив все точки точки первого множества с точками второго (как на рисунке 2, где $n=5$), мы получим граф, у которого не будет ни одного треугольника с вершинами в точках $A_{1},\ldots,A_{n}$.

kvant2

Число ребер в этом графе, очевидно, равно $\left [ \frac{n}{2} \right ]\left(n-\left [ \frac{n}{2} \right ]\right)$. Если $n$ — четное, то $$\left [ \frac{n}{2} \right ]\left (n-\left [ \frac{n}{2} \right ]\right)=\frac{n^{2}}{4}=\left [ \frac{n^{2}}{4} \right ].$$Если $n$ — нечетное, то $\left [ \frac{n}{2} \right ]\left(n-\left [ \frac{n}{2} \right ]\right)=$ $\frac{n-1}{2}\left(n-\frac{n-1}{2}\right)=$ $\frac{n^{2}-1}{4}=$ $\left [ \frac{n^{2}}{4}\right].$ Что и требовалось доказать.

Итак, ответ в задаче: максимальное число отрезков равно $\left [ \frac{n^{2}}{4}\right]$(этот результат в теории графов называют теоремой Турана).

M1635. О разбиении сторон правильного треугольника на $n$ равных отрезков.

Задача из журнала «Квант» (выпуск №2, 1998).

Условие

    Каждая сторона правильного треугольника разбита на $n$ равных отрезков, и через все точки деления проведены прямые, параллельные сторонам. Данный треугольник разбился на $n^{2}$ маленьких треугольников-клеток. Треугольники, расположенные между двумя соседними параллельными, образуют полоску.

  1. Какое наибольшее число клеток можно отметить, чтобы никакие две отмеченные клетки не принадлежали одной полоске ни по одному из трёх направлений, если $n=10$?
  2. Тот же вопрос для $n=9$.

Решение

  1. На рисунке 1 показан способ отметить 7 треугольников. Чтобы доказать, что при $n=10$ нельзя отметить 8 треугольников, разрежем исходный треугольник средними линиями на четыре треугольника. Каждый из них состоит из 25 треугольничков. Обозначим количества отмеченных треугольничков в угловых треугольниках буквами $k,l,m$, а в центральном — $n$. Тогда $k+l+n \leq 5$, поскольку два угловых треугольника вместе с центральным состоят из 5 полос. Аналогично,$l+m+n \leq 5$ и $m+k+n \leq 5$.
    Сложим эти три неравенства: $2k+2l+2m+3n \leq 15$. Следовательно, $ k+l+m+n \leq \frac{1}{2} \cdot (2\cdot k+2\cdot l+2\cdot m+3\cdot n)\leq \frac{15}{2} < 8 $.
  2. Решим задачу для произвольного $n$. Рассмотрим одну из сторон исходного треугольника и пронумеруем полоски соответствующего направления следующим образом: полоска, прилегающая к стороне, пусть будет иметь номер 1; следующая за ней — номер 2;…; полоска, состоящая из одного треугольника, примыкающего к вершине исходного большого треугольника, получит номер $n$.
    Теперь положение любого из $n^{2}$ треугольничков можно задать тройкой чисел — номеров полосок, в которых он лежит.
    Уточнение о номерах полосок

    Тройки номеров являются дискретным аналогом барицентрических координат, при которых положение любой точки, лежащей внутри правильного треугольника, определяется расстояниями до трёх его сторон. Сумма этих расстояний, как легко проверить, равна высоте треугольника.

    [свернуть]

    Введённые нами тройки номеров = «координаты» треугольничков — не могут принимать произвольные значения. Их сумма равна $n+2$, если треугольничек расположен «остриём вверх» (т.е. ориентирован так же, как исходный большой треугольник), и равна $n+1$, если «остриём вниз».
    Предположим, отмечены $k$ треугольников, никакие два из которых не попали в одну полоску. Оценим сумму $S$ всех их координат двумя способами. С одной стороны, сумма координат любого треугольника не превышает $n+2$, поэтому $ S\leq k\cdot (n+2) $. С другой стороны, сумма значений одной из координат по всем отмеченным треугольникам не меньше чем $1+2+3+\cdots +k=\frac{k\cdot (k+1)}{2}$. Значит, $3\cdot \frac{k\cdot (k+1)}{2}\leq S\leq k\cdot (n+2)$, откуда $3\cdot \frac{k+1}{2}\leq n+2$, т.е. $k+1\leq \frac{2\cdot n+4}{3}$. Итак, $k\leq \frac{2\cdot n+1}{3}\cdots$.
    Отметить $[\frac{2\cdot n+1}{3}]$ треугольничков можно следующим образом. Рассмотрим число $m=[\frac{n+1}{3}]$. На основании исходного треугольника отметим $(m+1)-й$ слева треугольничек, расположенный остриём вверх. В этой же вертикали отметим и все остальные треугольнички, ориентированные остриём вверх (рис.2).

    Всего в этой вертикали отмечено $(m+1)$ треугольничков. На второй горизонтальной полосе большого треугольника отметим $(2\cdot m+1)-й$ (считая слева) треугольничек, расположенный остриём вверх. Отметим и все остальные треугольнички этой вертикали, ориентированные остриём вверх. Всего в этой вертикали будет отмечено $n-1-2\cdot m$ треугольничков.
    Общее количество отмеченных треугольничков есть $m+1+n-1-2\cdot m=n-m=n-[\frac{n+1}{3}]=[\frac{2\cdot n+1}{3}]$.
    Чтобы проверить последнее равенство, достаточно разобрать три случая: $n$ равно $3\cdot a, 3\cdot a+1$ и $3\cdot a+2$.