15. Числовые ряды

14.3 Условный экстремум

Определение. Пусть $f $– действительная функция, заданная на открытом множестве $E ⊂ R^n,$ $M-p$-мерное многообразие, содержащееся в $E$. В точке $x_0 ∈ M$ функция $f$ имеет условный максимум на многообразии $M,$ если существует такая окрестность $U ⊂ E$ точки $x_0,$ что для всех $x ∈ U ∩ M$ выполняется неравенство $f(x)≤f(x_0).$

Условный максимум называется строгим, если окрестность можно выбрать настолько малой, что для всех $x ∈ U ∩M,$ $x \ne x_0,$ будет выполнено строгое неравенство $f(x)< f(x_0).$ Аналогично определяется понятие условного минимума.

Пример. Пусть $f(x, y) = xy.$ В начале координат эта функция не имеет обычного экстремума, поскольку в любой окрестности начала координат она принимает как положительные, так и отрицательные значения. Возьмем теперь многообразие $M_1 : y = x.$ На этом многообразии $f(x, y) = x^2$ и в точке $(0, 0)$ функция f имеет условный минимум на многообразии $M_1.$ Если взять $M_2 : y = −x,$ то на нем $f(x, y) = −x^2,$ и теперь функция $f$ имеет условный максимум в точке $(0, 0).$ Итак, функция f в начале координат не имеет экстремума, а на многообразиях $M_1$ и $M_2$ имеет условные минимум и максимум, соответственно.

 

Теорема (необходимое условие экстремума на многообразии). Пусть $f$– действительная функция, заданная на открытом множестве $E ⊂ R^n,$ содержащем многообразие $M$. Пусть в точке $x_0 ∈ M$ функция $f$ имеет условный экстремум и дифференцируема в этой точке. Тогда производная $f'{}(x_0)$ обращается в нуль на касательном пространстве $T_{x0}(M),$ т. е.$f'{} (x_0)·h = 0$ для любого $h ∈ T_{x0}(M).$

Доказательство.Пусть $h$ – касательный вектор, т. е. $h ∈ T_{x0}(M).$ Тогда существует такая функция $γ : R \to M,$ $γ(0) = x_0,$ что $γ'{}(0) = h.$ Рассмотрим функцию $g(t) = f(γ(t)) (t ∈ R).$ Если $f$ в точке $x_0$ имеет условный максимум, то при $t = 0$ функция $g$ имеет обычный локальный максимум. Функция $g$ дифференцируема в точке $t = 0$ и, по теореме о производной сложной функции,

$g'{}(0)= f'{}(γ(0))·γ'{} (0) = f'{}(x_0)·h$

С другой стороны, по теореме Ферма, $g'{}(0)=0.$ Итак, $f'{}(x_0)·h=0.$

Геометрический смысл теоремы. Предположим, что функция $f$ класса $C^1$ и рассмотрим множество

$H = ${$x:f(x)= f(x_0)$}

Это множество называется множеством уровня функции $f.$ Предположим, что $f'{}(x)\ne 0$ для всех $x ∈ H.$ Тогда получим, что $H – (n − 1)$- мерное многообразие, т. е. гиперповерхность. Касательное пространство к многообразию $H$ определяется как совокупность всех векторов $h,$ для которых выполнено равенство $f'{}(x_0)·h = 0.$ Доказанная теорема утверждает, что $p$-мерное подпространство $T_{x0}(M)$ содержится в $(n−1)$-мерной гиперплоскости $T_{x0}(H).$ Другими словами, касательная гиперплоскость к $H$ в точке $x_0$ содержит касательную $p$-плоскость к $M$ в этой точке.

Заметим, что доказанная теорема дает лишь необходимое условие экстремума. Можно показать, что достаточным оно не является.

Метод множителей Лагранжа. Пусть $M – p$-мерное многообразие, точка $x_0 ∈ M$ и в окрестности $U$ этой точки $M$ определено уравнением $ϕ(x) = 0,$ где $ϕ = (ϕ^1, …, ϕ ^{n−p} ),$ $rank$ $ϕ'{}(x) = n − p$ для любого $x ∈ U.$

Теорема. Пусть $f$ – действительная функция в некоторой окрестности многообразия $M,$ дифференцируемая в точке $x_0 ∈ M$ и имеющая в этой точке условный экстремум. Тогда существуют такие действительные числа $λ_1,…, λ_{n−p},$ что для функции

$F(x) = f(x) + λ_1ϕ^1(x) + … + λ_{n−p}ϕ^{n−p}(x)$

полная производная $F'{}(x_0) = 0.$

В силу предыдущей теоремы, $f'{}(x_0)·h = 0$ для любого $h ∈ T_{x0} (M).$ Это равносильно тому, что $grad$ $f(x_0)·h = 0$ для любого $h ∈ T_{x0} (M), $т. е. $grad$ $f(x_0)$ ортогонален к любому касательному вектору. Значит, этот градиент является нормальным вектором к многообразию $M$ в точке $x_0.$ Как известно, векторы $grad$ $ϕ^i (x_0) (i = 1, …, n − p)$ образуют базис в пространстве нормальных векторов. Значит, существуют числа $α_1, …, α_{n−p}$ такие, что

$grad$ $(f(x_0)) = α^1$ $grad$ $( ϕ^1 (x_0) + … + α_{n−p})$ $grad$ $(ϕ^{n−p} (x_0)).$

Обозначим $λ_i = −α_i, i = 1, …, n−p.$ Тогда видим, что для $F$ ее градиент $grad$ $F(x_0) = 0,$ а это равносильно тому, что $F'{}(x_0) = 0,$ и тем самым теорема доказана.

Числа $λ_1, …, λ_{n−p}$ называются множителями Лагранжа. Они определяются однозначно, так как являются координатами разложения вектора $grad$ $ f(x_0)$ по базису из векторов $grad$ $ϕ^i (x_0) (i = 1, …, n − p),$ взятых с противоположным знаком. Условие $rank $ $ϕ'{}(x) = n − p$ обеспечивает линейную независимость векторов $grad$ $ϕ^i (x_0) (i = 1, …, n − p).$

В качестве примера, иллюстрирующего метод множителей Лагранжа, рассмотрим следующую задачу. Найти расстояние от точки до гиперплоскости в пространстве $R^n.$

Решение

Гиперплоскость $H$ определяется уравнением

$ a_1x ^1 + … + a_nx^n = b,$

или в векторной форме $ax = b,$ где $a \ne 0,$ ибо, в противном случае, не получим гиперплоскость.

Пример. Пусть $x_0 ∈ R^n.$ Покажем, что расстояние от заданной точки $x_0$ до $H$ равно $d(x_0, H) = \frac{|ax_0−b|}{|a|}.$ Расстояние от $x_0$ до произвольной точки $x ∈ H$ выражается следующим образом:

Решение
$\sqrt{(x^1 − x^1_0 )^2 + … + (x^n − x^n_0 )^2}.$

Поэтому для нахождения минимума этих расстояний достаточно рассмотреть подкоренное выражение и найти его минимум.

Обозначим $f(x) = (x^1 − x^1_0 )^2 + … + (x^n − x^n_0 )^2 .$ Составим функцию Лагранжа

$ F(x) = f(x) + λ(ax − b) = f(x) + λ(a_1x^1 + … + a_nx ^n − b).$

Находим все частные производные функции $F$ и приравниваем их к нулю. Получаем

$ \left \{\begin{matrix} 2(x^1 − x^1_0 ) + λa_1 = 0,\\ ………………… \\ 2(x^n − x^n_0 ) + λa_n = 0, \\a_1x^1 + … + a_nx^n = b \end{matrix}\right.$

Последнее уравнение этой системы означает, что точка x лежит на гиперплоскости $H.$ Умножим $i$-е уравнение этой системы на $a_i (i = 1, …, n)$ и сложим первые $n$ уравнений. Тогда получим

$ 2 \sum_{i=1}^n (a_ix^i − a_ix^i_0 ) + λ\sum^n_{i=1} a^2_i = 0,$

или, учитывая последнее уравнение системы,

$ 2(b − ax_0) + λ|a|^2 = 0.$

Отсюда находим

$ λ = \frac{2(ax_0 − b)} {|a|^2}.$

Подставим найденное значение $λ$ в первые $n$ уравнений системы и получим

$2(x^i − x^i_0 ) = −a_i\frac{ 2(ax_0 − b) }{|a|^2} (i = 1, …, n).$

Каждое из этих равенств возведем в квадрат и сложим полученные равенства. Получим

$ f(x) = \frac{(ax_0 − b)^2} {|a|^2} ,$

а это и есть квадрат искомого расстояния.

Пример. Найти точки условного экстремума функции (если они есть) $f(x,y) = y_{2} — x_{2}$ при уравнении связи $y = 2x.$

Решение

Имеем $f(x, 2x) = 3x^{2},$ т.е. при выполнении уравнений связи данная функция является функцией одного переменного и достигает минимума при $x = 0.$
Значению $x = 0$ согласно уравнению связи соответствует значение $y = 0,$ а поэтому функция $f(x,y) = y_{2} — x_{2}$ имеет в точке $(0, 0)$ условный минимум относительно уравнения связи $y = 2x.$

Литература

Условный экстремум

Проверьте, насколько хорошо вы усвоили эту тему и закрепите свои знания по ней, пройдя тест.

М638.Бесконечный лист клетчатой бумаги

Условие

Некоторые клетки бесконечного листа клетчатой бумаги выкрашены в красный цвет, остальные-в синий, причем так, что каждый прямоугольник из 6 клеток размером 2×3 содержит в точности две красные клетки. Сколько красных клеток может содержать прямоугольник из 99 клеток размером 9×11?

Решение

Рассмотрим произвольную красную клетку К0 и рассмотрим квадрат 3×3 с центром в этой клетке. Соседние с К0 по горизонтали или вертикали клетки не могут быть красными: если, например, как на рисунке 1,   красной оказалась клетка К, то в правом  и левом прямоугольниках  2×3  больше  красных  клеток  не будет,  поэтому  в нижнем  таком  прямоугольнике   окажется  всего  одна  красная  клетка  (К0)-противоречие  с условием.  Итак, соседние  с К0  клетки-синие.

Далее,  в правом прямоугольнике должна быть еще одна красная клетка-пусть, например, это будет клетка К1, как на рисунке 2.

Рассматривая верхний и левый прямоугольники 2×3 из условия выводим, что в углу нашего квадрата 3×3, противоположном клетке К1, тоже должна стоять красная клетка-К, и красные клетки в этом квадрате расположены по диагонали. Рассматривая такие же квадраты с центрами в клетках К1 и К и сдвигая эти квадраты далее по «красной диагонали», из приведенного рассуждения получаем, что весь диагональный ряд КК0K1 состоит из красных клеток, а по два диагональных ряда выше и ниже красного-из синих клеток,  как  показано  на  рисунке  3.

Рассуждая аналогично ( см. рис. 3) ,получаем, что два следующих (сверху и снизу) ряда-красные, затем два ряда-синие, потом опять идут красные ряды, и так далее, как показано на рисунке 4.

Легко видеть, что раскраска рисунка 4 удовлетворяет  условию задачи. При этом каждый квадрат 3×3 содержит в точности три красные клетки, а так как прямоугольник 9×11 можно разбить на 9 квадратов 3×3 и 3 прямоугольника 2×3, заключаем, что в этом прямоугольнике 9*3+3*2=33 красные клетки.

В приведенном рассуждении доказано больше, чем требовалось условием задачи-фактически нами описаны все возможные раскраски.

Отметим, что в этой задаче совсем не обязательно рассматривать раскраску всей плоскости-можно было ограничиться раскраской 99 клеток прямоугольника 9×11.

8.3 Длина пути

Определение. Путем на плоскости называется отображение $t\mapsto\left(\varphi\left(t\right),\psi\left(t\right)\right)$ отрезка $\left[\alpha,\beta\right]$ в $\mathbb{R}^{2}$, задаваемое парой непрерывных функций $\varphi$ и $\psi$.

Это означает, что каждому значению $t\in\left[\alpha,\beta\right]$ ставится в соответствие точка плоскости с координатами $\left(x,y\right)$, где $x=\varphi\left(t\right)$, $y=\psi\left(t\right)$.

Точка $\left(\varphi\left(\alpha\right),\psi\left(\alpha\right)\right)$ называется началом пути, а точка $\left(\varphi\left(\beta\right),\psi\left(\beta\right)\right)$ — концом пути. Множество всех точек $\left\{\left(\varphi\left(t\right),\psi\left(t\right)\right)\in \mathbb{R}^{2}:t\in\left[\alpha,\beta\right]\right\}$ называется следом пути.

Пусть $\Pi$ – произвольное разбиение отрезка $\left[\alpha,\beta\right]$ точками $\alpha=t_{0}<t_{1}<…<t_{n}=\beta$. Обозначим $x_{i}=\varphi\left(t_{i}\right)$, $y_{i}=\psi\left(t_{i}\right)$ и составим сумму $l_{\Pi}=\sum\limits_{i=0}^{n-1}\sqrt{\left(x_{i+1}-x_{i}\right)^2+\left(y_{i+1}-y_{i}\right)^{2}}$. С геометрической точки зрения эта сумма представляет собой длину ломаной с вершинами $\left(x_{i},y_{i}\right)$, вписанной в след пути.

Определение. Длиной пути называется $sup_{\Pi}l_{\Pi}$, где верхняя грань берется по всевозможным разбиениям $\Pi$ отрезка $\left[\alpha,\beta\right]$. Сам путь обозначается через $\gamma=\left(\varphi,\psi\right)$, а его длина через $l_{\left(\gamma\right)}$. Если $l_{\left(\gamma\right)}<\infty$, то путь $\gamma$ называется спрямляемым.

Теорема (достаточное условие спрямляемости). Если путь $\gamma$ определяется уравнениями $x=\varphi\left(t\right)$, $y=\psi\left(t\right)$, $\alpha\leqslant t\leqslant\beta$, где $\varphi\left(t\right)$ и $\psi\left(t\right)$ непрерывно дифференцируемые функции на отрезке $\left[\alpha,\beta\right]$, то этот путь спрямляем.

Для любого разбиения $\Pi$: $\alpha=t_{0}<t_{1}<…<t_{n}=\beta$ отрезка $\left[\alpha,\beta\right]$, применяя теорему Лагранжа, получим

$$l_{\Pi}=\sum\limits_{i=0}^{n-1}\sqrt{\left[\varphi\left(t_{i+1}\right)-\varphi\left(t_{i}\right)\right]^2+\left[\psi\left(t_{i+1}\right)-\psi\left(t_{i}\right)\right]^{2}}=$$
$$=\sum\limits_{i=0}^{n-1}\sqrt{\left[\varphi^{\prime}\left(\tau_{i}\right)\right]^2+\left[\psi^{\prime}\left(\overline{\tau_{i}}\right)\right]^{2}}\Delta t_{i},$$
где точки  $\tau_{i}$, $\overline{\tau_{i}}\in\left[t_{i},t_{i+1}\right]$. По условию функции $\varphi^{\prime}\left(t\right)$ и $\psi^{\prime}\left(t\right)$ непрерывны на $\left[\alpha,\beta\right]$, а значит, ограничены, т. е. существует такая постоянная $M$, что $\mid\varphi^{\prime}\left(t\right)\mid\leqslant M$, $\mid\psi^{\prime}\left(t\right)\mid\leqslant M$ для всех $t\in\left[\alpha,\beta\right]$. Поэтому получаем
$$l_{\Pi}\leqslant M\sqrt{2}\sum\limits_{i=0}^{n-1}\Delta t_{i}=M\sqrt{2}\left(\beta-\alpha\right),$$
так что $l_{\left(\gamma\right)}=sup_{\Pi}l_{\Pi}<\infty$, т. е. путь $\gamma$ спрямляем.

Если функции $\varphi$ и $\psi$ непрерывно дифференцируемы на отрезке $\left[\alpha,\beta\right]$, то путь $\gamma=\left(\varphi,\psi\right)$ называется дифференцируемым, или путем класса $C^{1}$.

Теорема (вычисление длины пути). Пусть $\gamma=\left(\varphi,\psi\right)$ непрерывно дифференцируемый путь на отрезке $\left[\alpha,\beta\right]$. Тогда
$$l_{\gamma}=\int\limits_{\alpha}^{\beta}\sqrt{\left[\varphi^{\prime}\left(t\right)\right]^2+\left[\psi^{\prime}\left(t\right)\right]^{2}}dt \tag{8.1}.$$

Пусть $\Pi$ : $\alpha=t_{0}<t_{1}<…<t_{n}=\beta$ — некоторое разбиение отрезка $\left[\alpha,\beta\right]$. Предположим, что мы добавили к нему одну точку $t^{\prime}\in\left[t_{i},t_{i+1}\right]$, в результате чего получили новое разбиение $\Pi^{\prime}$. Тогда $l_{\Pi}\leqslant l_{\Pi^{\prime}}$. Действительно, в суммах $l_{\Pi}$ и $l_{\Pi^{\prime}}$ будут одинаковые слагаемые, кроме слагаемых, отвечающих отрезку $\left[t_{i},t_{i+1}\right]$. В сумме $l_{\Pi}$ этому отрезку отвечает слагаемое

$$s_{i}=\sqrt{\left[\varphi\left(t_{i+1}\right)-\varphi\left(t_{i}\right)\right]^2+\left[\psi\left(t_{i+1}\right)-\psi\left(t_{i}\right)\right]^{2}},$$
а в сумме $l_{\Pi^{\prime}}$ вместо него будут два следующих слагаемых:
$$s^{\prime}_{i}+s^{\prime\prime}_{i}=\sqrt{\left[\varphi\left(t_{i+1}\right)-\varphi\left(t^{\prime}\right)\right]^2+\left[\psi\left(t_{i+1}\right)-\psi\left(t^{\prime}\right)\right]^{2}}+$$
$$+\sqrt{\left[\varphi\left(t_{i}\right)-\varphi\left(t^{\prime}\right)\right]^2+\left[\psi\left(t_{i}\right)-\psi\left(t^{\prime}\right)\right]^{2}}.$$
Из неравенства треугольника легко видеть, что $s_{i}\leqslant s^{\prime}_{i}+s^{\prime\prime}_{i}.$

Таким образом, при измельчении разбиения суммы $l_{\Pi}$ не уменьшаются. Кроме того, по предыдущей теореме, путь $\gamma$ спрямляем, так что для любого $\varepsilon >0$ найдется такое разбиение $\Pi_{0}$, что $l_{\left(\gamma\right)}\geqslant l_{\Pi_{0}}>l_{\left(\gamma\right)}-\varepsilon$. Поэтому для любого разбиения $\Pi$, которое является измельчением разбиения $\Pi_{0}$, также справедливо неравенство
$$l_{\left(\gamma\right)}-\varepsilon<l_{\Pi}\leqslant l_{\left(\gamma\right)}. \tag{8.2}$$

Осталось показать, что при стремлении к нулю диаметра разбиения суммы $l_{\Pi}$ сремятся к интегралу, записанному справа в $(8.1)$. Как мы видели выше,
$$l_{\Pi}=\sum\limits_{i=0}^{n-1}\sqrt{\left[\varphi^{\prime}\left(\tau_{i}\right)\right]^2+\left[\psi^{\prime}\left(\overline{\tau_{i}}\right)\right]^{2}}\Delta t_{i}.$$
Эта сумма отличается от интегральной суммы для интеграла справа в $(8.1)$ тем, что значения функций $\varphi^{\prime}$ и $\psi^{\prime}$ берутся в разных точках. Применим очевидное неравенство
$$\mid\sqrt{a^{2}+b^{2}}-\sqrt{a^{2}+b^{-2}}\mid\leqslant\frac{\mid b^{2}-b^{-2}\mid}{\mid b\mid+\mid \overline{b}\mid}\leqslant\mid b-\overline{b}\mid,$$
справедливое для любых чисел $a,b$ и $\overline{b}.$ Тогда получим
$$\mid l_{\Pi}-\sum\limits_{i=0}^{n-1}\sqrt{\left[\varphi^{\prime}\left(\tau_{i}\right)\right]^2+\left[\psi^{\prime}\left(\tau_{i}\right)\right]^{2}}\Delta t_{i}\mid\leqslant$$
$$\leqslant\sum\limits_{i=0}^{n-1}\mid\psi^{\prime}\left(\overline{\tau_{i}}\right)-\psi^{\prime}\left(\tau_{i}\right)\mid\Delta t_{i}\leqslant\sum\limits_{i=0}^{n-1}\omega_{i}\left(\psi^{\prime}\right)\Delta t_{i},$$
где $\omega_{i}\left(\psi^{\prime}\right)$ — колебание функции $\psi^{\prime}$ на отрезке $\left[t_{i},t_{i+1}\right]$. Так как функция $\psi^{\prime}$ непрерывна, то она интегрируема на $\left[\alpha,\beta\right]$. В силу критерия интегрируемости в терминах колебаний имеем $\sum\limits_{i=0}^{n-1}\omega_{i}\left(\psi^{\prime}\right)\Delta t_{i}\rightarrow 0$ при стремлении к нулю диаметра разбиения.

Итак, мы получили, что если только диаметр разбиения достаточно мал, то сумма $l_{\Pi}$ мало отличается от интегральной суммы, соответствующей интегралу справа в $(8.1)$. Поэтому из $(8.2)$ следует $(8.1)$, и теорема доказана.

Пример. Вычислить длину одной арки циклоиды $x=a\left(t-\sin t\right)$, $y=a\left(1-\cos t\right)$, $0\leqslant t\leqslant 2\pi$, где параметр $a>0$.

Имеем
$$x^{\prime}\left(t\right)=a\left(1-\cos t\right),$$
$$l=a\int\limits_{0}^{2\pi} \sqrt{\left(1-\cos t\right)^{2}+\sin ^{2}t}dt=a\sqrt{2}\int\limits_{0}^{2\pi}\sqrt{1-\cos t}dt=$$
$$=2a\int\limits_{0}^{2\pi} \mid\sin\frac{t}{2}\mid dt=-2a\cdot2\cos\frac{t}{2}\mid^{2\pi}_{0}=8a.$$

Путь $\gamma=\left(\varphi,\psi\right)$ на отрезке $\left[\alpha,\beta\right]$ называется жордановым, или простым путем, если отображение $\gamma:\left[\alpha,\beta\right]\mapsto \mathbb{R}^{2}$ взаимно однозначно. Это означает, что различным точкам $t^{\prime},t^{\prime\prime}\in\left[\alpha,\beta\right]$ соответствуют различные точки на плоскости.

Множество $\Gamma$ на плоскости называется жордановой, или простой кривой, если оно является следом некоторого жорданового пути. Каждый такой жорданов путь называется параметризацией жордановой кривой $\Gamma.$

Если есть две различных параметризации $\gamma_{1}:\left[\alpha,\beta\right]\rightarrow\Gamma$ и $\gamma_{2}:\left[a,b\right]\rightarrow\Gamma$ одной и той же жордановой кривой $\Gamma$, то $\gamma_{2}=\gamma_{1}\circ\tau$, где $\tau$ — некоторая строго монотонная и непрерывная функция, переводящая отрезок $\left[a,b\right] $в $\left[\alpha,\beta\right]$. Это означает, что любые две параметризации жордановой кривой могут быть получены одна из другой с помощью непрерывной и строго монотонной замены параметра.

Пример. Пусть $\Gamma=\left\{\left(x,y\right):x+y=1,x,y\geqslant0\right\}$. Приведем примеры параметризаций

      $1) x=\cos^{2}u$, $y=\sin^{2}u$, $0\leqslant u\leqslant \frac{\pi}{2},$
      $2) x=t$, $y=1-t$, $0\leqslant t\leqslant 1.$

Можно, например, выразить $t$ через $u$ следующим образом: $t=\cos^{2}u$. Данная функция убывает на $\left[0,\frac{\pi}{2}\right]$.

Пользуясь тем фактом, что две параметризации одной и той же жордановой кривой могут быть получены одна из другой с помощью строго монотонной и непрерывной замены параметра, можно легко доказать, что для любых двух путей, являющихся параметризациями одной и той же жордановой кривой $\Gamma$, спрямляемость одного из этих путей влечет спрямляемость другого и равенство их длин.

Определение. Жорданова кривая $\Gamma$ называется спрямляемой, если спрямляемы ее параметризации. Длиной жордановой кривой $\Gamma$ называется длина любой из ее параметризаций.

Если у жордановой кривой $\Gamma$ есть хотя бы одна непрерывно дифференцируемая параметризация $\gamma=\left(\varphi,\psi\right)$, то эта кривая спрямляема, а ее длина выражается равенством
$$l\left(\Gamma\right)=\int\limits_{\alpha}^{\beta}\sqrt{\left[\varphi^{\prime}\left(t\right)\right]^2+\left[\psi^{\prime}\left(t\right)\right]^{2}}dt.$$

Как частный случай рассмотрим следующий вопрос: как определить длину графика функции?

Пусть на отрезке $\left[a,b\right]$ задана непрерывно дифференцируемая функция $f$. Обозначим через $\Gamma$ ее график, т. е. $\Gamma=\left\{\left(x,y\right);y=f\left(x\right),a\leqslant x\leqslant b\right\}$. Тогда $\Gamma$ является жордановой кривой, поскольку это – след жорданова пути, параметризация которого может быть задана, например, уравнениями $x=t,y=f\left(t\right)\left(a\leqslant t\leqslant b\right)$. Поэтому при наших предположениях это спрямляемый путь и его длина равна
$$l\left(\Gamma\right)=\int\limits_{a}^{b} \sqrt{1+\left[f^{\prime}\left(x\right)\right]^{2}}dx.$$

Итак, мы получили формулу для длины кривой, заданной явным уравнением $y=f\left(x\right)\left(a\leqslant x\leqslant b\right).$

Примеры решения задач

Вычислить длины дуг, заданными следующими уравнениями.

  1. $y=\sqrt{x^{3}}$, $a=0$, $b=1$
    Решение

    $l=\int\limits_{a}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}}\text{d}x=\int\limits_{0}^{1} \sqrt{1+\left(\frac{3}{2}\sqrt{x}\right)^{2}}\text{d}x=\int\limits_{0}^{1} \sqrt{1+\frac{9}{4}x}\text{d}x=$
    $=\frac{4}{9}\int_{0}^{1} \left(1+\frac{9}{4}x\right)^{\frac{1}{2}}\text{d}\left(1+\frac{9}{4}x\right)=\frac{4}{9}\cdot\frac{2}{3}\left(1+\frac{9}{4}x\right)^{\frac{3}{2}}\mid^{1}_{0}=$
    $=\frac{8}{27}\sqrt{\left(1+\frac{9}{4}x\right)^{3}}\mid^{1}_{0}=\frac{8}{27}\sqrt{\left(1+\frac{9}{4}\right)^{3}-\left(1+0\right)^{3}}=\frac{8}{27}\left(\sqrt{\left(\frac{13}{4}\right)^{3}}-1\right)$

  2. $y=e^{x}+6$, $\ln\sqrt{8}\leqslant x\leqslant\ln\sqrt{15}$
    Решение

    $l=\int\limits_{\ln\sqrt{8}}^{\ln\sqrt{15}} \sqrt{\left(y^{\prime}\right)^{2}+1}\text{d}x=\int\limits_{\ln\sqrt{8}}^{\ln\sqrt{15}} \sqrt{e^{2x}+1}\text{d}x=$
    $=\begin{bmatrix}t^{2}=e^{2x}+1 \\\text{d}x=\frac{t}{t^{2}-1} \end{bmatrix}=\int\limits_{3}^{4} \frac{t^{2}-1+1}{t^{2}-1}\text{d}t=\int\limits_{3}^{4} \text{d}t + \int\limits_{3}^{4} \frac{\text{d}t}{t^{2}-1}=$
    $=1+\frac{1}{2}\ln\mid\frac{t-1}{t+1}\mid\mid^{4}_{3}=1+\frac{1}{2}\ln\left(\frac{6}{5}\right)$

  1. Лысенко З.М. Конспект лекций по математическому анализу
  2. В.И.Коляда, А.А.Кореновский. Курс лекций по математическому анализу т.1. Одесса, «Астропринт», 2010, стр 247-252
  3. Б.П.Демидович. Сборник задач и упражнений по математическому анализу, 13-ое издание, Московского университета, 1997, стр. 234-236

8.5 Площадь поверхности тела вращения

Пусть на отрезке $\left[a,b\right]$ задана неотрицательная непрерывно дифференцируемая функция $f$. Будем вращать ее график вокруг оси $Ox$. В результате получим некоторую поверхность. Выведем формулу для вычисления ее площади.

Рассмотрим разбиение отрезка $\left[a,b\right]$ точками $a = x_{0} < x_{1} < . . . < x_{n}$. Вращая криволинейную трапецию, ограниченную графиком функции $y = f(x), x_{i} \leqslant x \leqslant x_{i+1}$, получим усеченный «конус» с образующей $y = f(x)$ и радиусами оснований $f(x_{i})$ и $f(x_{i+1})$. Соединим точки $\left(x_{i},f\left(x_{i}\right)\right)$ и $\left(x_{i+1},f\left(x_{i+1}\right)\right)$ отрезком. В результате вращения получим усеченный конус с теми же радиусами оснований и этим отрезком в качестве образующей. Площадь боковой поверхности этого конуса равна
$$2\pi\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}l_{i},$$
где $l_{i}=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)^{2}}$ — длина образующей. Складывая, получаем
$$\sigma\equiv2\pi\sum\limits_{i=0}^{n-1}{\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}l_{i}}.$$

При стремлении к нулю диаметра разбиения сумма σ стремится к определенному пределу, который естественно считать площадью поверхности вращения. С другой стороны, если в выражении для $l_{i}$ применить формулу Лагранжа, то получим
$$\sigma=2\pi\sum\limits_{i=0}^{n-1}{\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}\sqrt{1+\left[f^{\prime}\left(\xi_{i}\right)\right]^{2}}\Delta x_{i}},$$
где $\xi_{i}\epsilon\left[x_{i},x_{i+1}\right]$. Заменим в правой части $x_{i}$ и $x_{i+1}$ на $\xi_{i}$ и оценим погрешность. Имеем
$$\mid\sigma-2\pi\sum\limits_{i=0}^{n-1}{f\left(\xi_{i}\right)}\sqrt{1+\left[f^{\prime}\left(\xi_{i}\right)\right]^{2}}\Delta x_{i}\mid\leqslant2\pi\sum\limits_{i=0}^{n-1}\omega_{i}\sqrt{1+M^{2}}\Delta x_{i}$$
где $ω_{i}$ – колебание функции $f$ на $\left[x_{i},x_{i+1}\right]$, а $M$ – верхняя грань функции $\mid f^{\prime}\mid$ на $\left[a,b\right]$. Из условий на функцию $f$ следует, что правая часть стремится к нулю вместе с диаметром разбиения. Поэтому сумма $\sigma$ стремится к $2\pi\int\limits_{a}^{b} f\left(x\right)\sqrt{1+\left[f^{\prime}\left(x\right)\right]^{2}}{\text{d}x}$.

Итак, получили следующую формулу для нахождения площади поверхности вращения:
$$S=2\pi\int\limits_{a}^{b} f\left(x\right)\sqrt{1+\left[f^{\prime}\left(x\right)\right]^{2}}{\text{d}x}.$$

Примеры решения задач

  1. Найти площадь поверхности, образованной вращением вокруг оси $Ox$ дуги кубической параболы $y=x^{3}$, заключенной между прямыми $x=0$ и $x=1$.
    Решение

    $P=2\pi\int\limits_{a}^{b} f\left(x\right)\sqrt{1+\left(f^{\prime}\left(x\right)\right)^{2}}dx=2\pi\int\limits_{0}^{1}x^{3}\sqrt{1+\left(3x^{2}\right)^{2}}dx=$
    $=2\pi\int\limits_{0}^{1}x^{3}\sqrt{1+9x^{4}}dx=\begin{bmatrix}t=1+9x^{4} \\dt=36x^{3}dx \end{bmatrix}=$
    $=2\pi\int\limits_{1}^{10} \sqrt{t}\frac{\text{d}t}{36}=\frac{\pi}{18}\int\limits_{1}^{10} \sqrt{t}{\text{d}t}=\frac{\pi}{18}\cdot\frac{2}{3}t^{\frac{3}{2}}\mid^{10}_{1}=\frac{\pi}{27}\left(10\sqrt{10}-1\right)$

  2. Вычислить площадь поверхности, которая образована вращением кривой $y^{2}=4+x$, которая отсекается прямой $x=2$ вокруг оси $Ox$.
    Решение

    $P=2\pi\int\limits_{a}^{b} \psi\left(t\right)\sqrt{\left(\varphi^{\prime}\left(t\right)\right)^{2}+\left(\psi^{\prime}\left(t\right)\right)^{2}}=2\pi\int\limits_{-4}^{2} y\sqrt{1+\left(y^{\prime}\right)^2}\text{d}x=$
    $=2\pi\int\limits_{-4}^{2} \sqrt{\left(4+x\right)\left(1+\frac{1}{4(4+x)}\right)}\text{d}x=\pi\int\limits_{-4}^{2} \sqrt{17+4x}{\text{d}x}=$
    $=\frac{\pi}{6}\left(125-1\right)=\frac{62}{3}\pi$

  3. Вычислить площадь поверхности тела вращения, заданными такими уравнениями: $x\left(t\right)=3\cos t$, $y\left(t\right)=3\sin t$.
    Решение

    $P=2\pi\int\limits_{a}^{b} y\left(t\right)\sqrt{\left(x^{\prime}\left(t\right)\right)^{2}+\left(y^{\prime}\left(t\right)\right)^{2}}\text{d}x=2\pi\int\limits_{0}^{\pi} 3\sin t\cdot3\text{d} t=$
    $=\frac{\pi}{6}\left(17+4x\right)^{\frac{3}{2}}\mid^{2}_{-4}=-18\pi \left(\cos t\right)\mid^{\pi}_{0}=-18\pi\cdot\left(\cos \pi-\cos 0\right)\mid^{\pi}_{0}=$
    $=-18\pi\left(-1-1\right)=36\pi$

Площадь поверхности тела вращения

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

  1. Лысенко З.М. Конспект лекций по математическому анализу
  2. В.И.Коляда, А.А.Кореновский. Курс лекций по математическому анализу т.1. Одесса, «Астропринт», 2010, стр 253-254
  3. Б.П.Демидович. Сборник задач и упражнений по математическому анализу, 13-ое издание, Московского университета, 1997, стр. 419-421