Воспользуемся разложением в ряд Тейлора, обозначив вектор сдвига как [latex]\mathbf{h}=(h_{1},…,h_{m})[/latex]. Тогда
$$ f(\mathbf{x}+\mathbf{h}) = f(\mathbf{x}) + \frac{1}{2!} \mathbf{h^{T} H(x) h} + \underline{o}((\left\| \mathbf{h} \right\|)^{2}),\left\| h \right\| =\sqrt { \sum _{ i=1 }^{ n }{ h_{ i }^{ 2 } } } \\ f(\mathbf{x}+\mathbf{h}) = f(\mathbf{x}) + \sum _{i=1}^{m}{\sum_{j=1}^{m}{\frac {\partial f^{2}} {\partial x_{i} \partial x_{j}}h_{i}h_{j}}} + \underline{o}((\left\| \mathbf{h} \right\|)^{2}) \\ f(\mathbf{x}+\mathbf{h}) — f(\mathbf{x}) = \frac {1}{2!} \left\| \mathbf{h} \right\|^{2}\left[\sum _{i=1}^{m}{\sum_{j=1}^{m}{\frac {\partial f^{2}} {\partial x_{i} \partial x_{j}} \frac{h_{i} } { \left\| \mathbf{h} \right\| } \frac{ h_{j}} {\left\| \mathbf{h} \right\|}}} + \underline{o}(1) \right] $$
Отсюда следует, что знак выражения в левой части, позволяющий судить о наличии или отсутствии экстремума в точке [latex]\mathbf{x}[/latex], определяется знаком выражения в квадратных скобках. Посмотрим на неё внимательнее: пусть [latex]\mathbf{h} != 0[/latex], тогда вектор [latex]{ e }=\left( \frac { h_{ 1 } }{ \left\| { h } \right\| } ,\frac { h_{ 2 } }{ \left\| { h } \right\| } ,…,\frac { h_{ m } }{ \left\| { h } \right\|} \right) [/latex] имеет единичную норму [latex]\left\| { e } \right\| = 1[/latex], каким бы он ни был. Форма [latex]\sum _{i=1}^{m}{\sum_{j=1}^{m}{\frac {\partial f^{2}} {\partial x_{i} \partial x_{j}} \frac{h_{i} } { \left\| \mathbf{h} \right\| } \frac{ h_{j}} {\left\| \mathbf{h} \right\|}}}[/latex] непрерывна на [latex]\mathbb{R}^{m}[/latex] как однородный многочлен второй степени от координат [latex]\mathbf{h}[/latex] в силу непрерывности вторых производных [latex]f[/latex] в окрестности [latex]\mathbf{x}[/latex]. Квадратичная форма непрерывна и на единичной сфере [latex]S(0;1)=\left\{ x \in \mathbb{R}^{m}| \left\| { x } \right\| \le 1 \right\} [/latex]. Приниципиальный интерес этот факт представляет по той причине, что единичная сфера — компакт, а свойства скалярных функций, непрерывных на компакте, хорошо известны и сыграют важную роль. В частности, непрерывная на компакте функция достигает на нём своих точных верхней и нижней граней [latex]m[/latex] и [latex]M[/latex].
Если форма положительно определена, то [latex]0 0[/latex], что [latex]\forall y: \left\| y \right\| < \delta \quad \underline { o } (1)=\alpha (y) < m \Rightarrow \underline { o } (1) < m 0[/latex].
Доказательство для случая отрицательно определённой квадратичной формы симметрично приведенному.
Докажем далее, что значения разных знаков, принимаемые формой в окрестности данной точки, являются достаточным условием отсутствия в ней экстремума функции. Сохраняя обозначения предыдущего пункта, назовём [latex]\mathbf{e_{m}}[/latex] и [latex]\mathbf{e_{M}}[/latex] точки единичной сфера, в которых форма достигает значений [latex]m[/latex] и [latex]M[/latex] соответственно, причем пусть [latex]m < 0 < M[/latex].
Вновь выпишем разложение в ряд Тейлора функции [latex]f[/latex], взяв за вектор сдвига вектор [latex]t\mathbf{e_{m}}[/latex], где число [latex]t[/latex] подобрано таким образом, чтобы [latex]\mathbf{x}+t\mathbf{e_{m}} \in U(x)[/latex]:
$$ f({ x }+{ h })-f({ x })=\frac { 1 }{ 2! } \left\| { te_{ m } } \right\| ^{ 2 }\left[ m+\underline { o } (1) \right] =\frac { 1 }{ 2! } (\left| t \right| \left\| { e_{ m } } \right\| )^{ 2 }\left[ m+\underline { o } (1) \right] =\frac { 1 }{ 2! } t^{ 2 }\left[ m+\underline { o } (1) \right] $$
Аналогично рассуждениям предыдущего пункта, рассмотрим случай [latex]\text{sign}(\underline {o}(1))=1[/latex]: [latex]\lim _{ \left\| t \right\| \rightarrow 0}{ \alpha (t\mathbf{e_{m}}) } = 0 \Rightarrow \exists \delta > 0: \forall t m[/latex]. Тогда значение в квадратных скобках, как и выражение в левой части, неположительно. В ходе аналогичных рассуждений получим двойственную ситуацию для [latex]\mathbf{e_{M}}[/latex]. Следовательно, в любой окрестности [latex]U(\mathbf{x})[/latex] точки [latex]\mathbf{x}[/latex] функция [latex]f[/latex] принимает значения, как большие, так и меньше [latex]f(\mathbf{x})[/latex], следовательно, в точке [latex]\mathbf{x}[/latex] экстремума быть не может по определению.
[свернуть]