2.1 Определение и элементарные свойства предела последовательности

Последовательность – это функция натурального аргумента. Если каждому натуральному числу $n$ поставлено в соответствие действительное число $\{x_n\}.$ Иначе последовательность обозначают так: $x_1, x_2,…, x_n,….$ Число $x_n$ называется $n-$м элементом (или $n-$м членом) последовательности. Элементы последовательности считаются различными, даже если они равные, но имеют разные номера. Например, последовательность $1, 1, …,$ у которой все $x_n = 1$. Последовательность может быть задана формулой, которая по заданному $n$ позволяет вычислить значение $x_n,$ например, $\frac{(-1)^n + 1}{2}.$ Можно задавать последовательность рекуррентно, т. е. указывать закон, по которому каждый следующий элемент вычисляется по известным предыдущим, например, арифметическая $x_{n+1} = x_n + d,$ или геометрическая $x_{n+1} = x_n \cdot q$ прогрессии (при этом нужно определить один или несколько первых элементов). Можно задавать последовательность описанием её элементов, например, $x_n$ – $n$-й десятичный знак после запятой у числа $\pi.$

Определение. Число $a$ называется пределом последовательности $\{x_n\},$ если для любого $\varepsilon > 0$ найдётся номер $N,$ зависящий, вообще говоря, от $\varepsilon,$ такой, что для всех номеров $n \ge N$ выполняется неравенство $\left |x_n-a\right | < \varepsilon.$ В этом случае пишут $x_n \to a$ $(n \to \infty),$ или $$\lim\limits_{n\to\infty} x_n = a.$$ В кванторах это определение выглядит следующим образом: $$\lim\limits_{n\to\infty} = a\;\Longleftrightarrow\;\forall\varepsilon > 0\;\exists N \equiv N_{\varepsilon} : \forall n \ge N\;|x_n-a| < \varepsilon.$$

Если последовательность имеет предел, то говорят, что она сходится. В противном случае говорят, что последовательность расходится.

Для того чтобы выяснить геометрический смысл предела последовательности, перепишем неравенство $\left |x_n-a \right | < \varepsilon$ в таком эквивалентном виде $a-\varepsilon < x_n < a + \varepsilon.$ Тогда понятно, что с геометрической точки зрения равенство $\lim\limits_{n\to\infty} x_n = a$ означает, что все члены последовательности, начиная с некоторого номера $N(\varepsilon),$ зависящего от $\varepsilon,$ находится в $\varepsilon-$ окрестности точки $a.$ Вне этой окрестности находится, быть может, лишь конечное число элементов, а именно, те $x_n,$ номера $n$ которых меньше, чем $N(\varepsilon).$

В терминах окрестностей определение предела можно переформулировать следующим образом.

Определение. Число $a$ называется пределом последовательности $\{x_n\},$ если для любого $\varepsilon-$ окрестности $U_{\varepsilon}(a)$ числа $a$ найдётся такой номер $N(\varepsilon),$ начиная с которого все члены последовательности принадлежат этой окрестности, т. е. $$\forall U_{\varepsilon}(a)\;\exists N : \forall n \ge N\; x_n\in U_{\varepsilon}(a).$$

Пример 1.Пусть $x_n = a\;(n = 1, 2, …).$ Такая последовательность называется стационарной. Ясно, что $\lim\limits_{n\to\infty} x_n = a.$

Пример 2.Пусть $x_n = \frac{(-1)^n}{n}.$ Покажем, что $\lim\limits_{n\to\infty} \frac{(-1)^n}{n} = 0.$ Зададим $\varepsilon > 0$ и рассмотри неравенство $\left | \frac{(-1)^n}{n}-0 \right | = \frac{1}{n} < \frac{1}{\varepsilon}.$ Оно выполняется, если только $n > \frac{1}{\varepsilon}.$ Положим $N = \left [\frac{1}{\varepsilon} \right ] + 1,$ где $\left [b\right ]$ означает целую часть числа $b.$ Тогда из неравенства $n \ge N$ следует, что $n > \frac{1}{\varepsilon},$ а значит, $\left | \frac{(-1)^n}{n}-0 \right | = \frac{1}{n} < \frac{1}{\varepsilon}.$ Таким образом, мы показали по определению, что число $a = 0$ является пределом последовательности $x_n.$

Пример 3. Покажем, что $\lim\limits_{n\to\infty}(\sqrt{n+1}-\sqrt n) = 0.$ Зададим $\varepsilon > 0.$ Тогда получим, что неравенство $$\left |(\sqrt{n+1}-\sqrt n)-0\right | = \sqrt{n+1}-\sqrt n = \frac{1}{\sqrt{n+1}+\sqrt n} \le \frac{1}{\sqrt n} < \varepsilon$$ справедливо, если только $n > \frac{1}{\varepsilon^2}.$ Поэтому достаточно взять $N = \left [\frac{1}{\varepsilon^2}\right ]+1.$

Замечание. При доказательстве равенства $\lim\limits_{n\to\infty} x_n = a$ по определению не требуется находить наименьший номер $N,$ начиная с которого выполняется неравенство $\left |x_n-a \right | < \varepsilon.$ Достаточно лишь указать какой-нибудь номер $N(\varepsilon),$ начиная с которого $\left |x_n-a \right | < \varepsilon.$

Отрицание определения предела. Число $a$ не является пределом последовательности $\{x_n\},$ если найдётся такое положительное $\varepsilon ,$ что для любого $N$ существует $n \ge N$ такое, что $\left |x_n-a\right | \ge \varepsilon,$ т. е. $$\exists\varepsilon > 0 : \forall N\;\exists n \ge N : |x_n-a| \ge \varepsilon.$$В этой записи число $N$ не может зависеть от $\varepsilon,$ а $n$ зависит от $N.$

В терминах окрестностей получаем, что число $a$ не является пределом последовательности $\{x_n\},$ если найдётся такая окрестность числа $a,$ вне которой находится бесконечно много элементов последовательности $x_n.$

Теперь легко можем сформулировать в кванторах определение расходящейся последовательности: $$\forall a\;\exists\varepsilon = \varepsilon (a) > 0 : \forall N\;\exists n \ge N : |x_n-a| \ge \varepsilon.$$

Пример 4.Докажем, что последовательность $x_n = (-1)^n$ расходится. Зададим произвольное $a \in \mathbb{R}$ и положим $\varepsilon = \frac{1}{2}.$ Если $a \ge 0,$ то вне окрестности $(a-\varepsilon , a+\varepsilon )$ находятся элементы последовательности с нечётными номерами, а если $a < 0,$ то с чётными номерами. Итак, какое бы $N$ мы ни взяли, найдётся $n \ge N$ (например, $n = 2N+1,$ если $a \ge 0$ и $n = 2N,$ если $a < 0$), для которого справедливо неравенство $|x_n-a| \ge \varepsilon.$

Примеры решения задач

  1. Доказать исходя из определения, что число $1$ является пределом последовательности $$\{x_n\} = \frac{n}{n+1}.$$
    Решение

    Рассмотрим модуль разности $$\left | x_{n}-1 \right | = \left | \frac{n}{n+1}-1 \right | = \frac{1}{n+1}.$$
    Возьмем произвольное число $\varepsilon > 0.$ Должно выполняться неравенство $\frac{1}{n+1} < \varepsilon.$ Т. е при $n > \frac{1}{\varepsilon}-1$

    Выберем в качестве $N_{\varepsilon}$ какое-нибудь натуральное число, удовлетворяющее условию $N_{\varepsilon}>\frac{1}{\varepsilon}-1,$ например, число $N_{\varepsilon }=\left [ \frac{1}{\varepsilon}-1 \right ] + 1.$

    Тогда для всех $n\geq N_{\varepsilon }$ будет выполняться неравенство $$\left | x_{n}-1 \right | = \frac{1}{n+1} \le \frac{1}{N_{\varepsilon}+1} < \varepsilon.$$

    Это и означает, что $1$ является пределом последовательности $\{\frac{n}{n+1}\},$ то есть $$\lim\limits_{n\to \infty } \frac{n}{n+1} = 1.$$

    [свернуть]
  2. Пользуясь определением, найти предел последовательности $$\{x_n\} = \frac{n-1}{n}.$$
    Решение

    Докажем, что $\lim\limits_{n\to \infty } x_{n} = 1.$ Так как $x_{n}=1-\frac{1}{n},$ то $\left | x_{n}-1 \right |=\frac{1}{n}.$ Возьмем произвольное число $\varepsilon > 0.$ Неравенство $\left | x_{n}-1 \right | < \varepsilon$ будет выполняться, если $\frac{1}{n} < \varepsilon .$

    Выберем в качестве $N_{\varepsilon}$ какое-нибудь натуральное число, удовлетворяющее условию $N_{\varepsilon}> \frac{1}{\varepsilon},$ например, число $N_{\varepsilon }=\left [ \frac{1}{\varepsilon } \right ] + 1.$

    Тогда для всех $n\geq N_{\varepsilon }$ будет выполняться неравенство $\left | X_{n}-1 \right | = \frac{1}{n} \le \frac{1}{N_{\varepsilon }} < \varepsilon.$ По определению предела это означает, что $\lim\limits_{n\to \infty } x_{n} =1.$

    [свернуть]
  3. Доказать исходя из определения, что $$\lim\limits_{n\to \infty } \frac{2n}{n^3+1} = 0.$$
    Решение

    Возьмем произвольное число $\varepsilon > 0.$ Должно выполняться неравенство $\left | \frac{2n}{n^3+1} \right | < \varepsilon.$ $$\frac{2n}{n^3+1} < \frac{2}{n^2} < \varepsilon .$$

    Выберем в качестве $N_{\varepsilon}$ какое-нибудь натуральное число, удовлетворяющее условию $N_{\varepsilon}> \sqrt{\frac{2}{\varepsilon}},$ например, число $N_{\varepsilon }=\left [ \sqrt{\frac{2}{\varepsilon}} \right ] + 1.$

    Тогда для всех $n\geq N_{\varepsilon }$ неравенство будет выполняться. Следовательно $\lim\limits_{n\to \infty } \frac{2n}{n^3+1} = 0.$

    [свернуть]

Литература

  1. Лысенко З.М. Конспект практики по математическому анализу
  2. Коляда В.И., Кореновский А. А. Курс лекций по математическому анализу.- Одесса : Астропринт , 2009. с. 15-17.
  3. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. 5-е изд., перераб. и доп. — Москва: Дрофа, 2003. — 703 с. — с.128-130.
  4. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — 607 с. — С. 37-39.

Предел последовательности

Тест на проверку усвоенного в пройденной теме.

2.2 Бесконечно малые и бесконечно большие последовательности

Определение. Последовательность $\left\{x_n\right\}$ называется бесконечно малой, если $\lim\limits_{n\to\infty} x_n = 0$.

Легко видеть, что последовательность $\left\{x_n\right\}$ сходится к числу $a$ тогда и только тогда, когда последовательность $a_n = x_n — a$ бесконечно малая. Используя это, можно дать следующее равносильное определение предела.

Определение. Число $a$ называется пределом последовательности $\left\{ x_n\right\}$, если последовательность $\left\{x_n — a\right\}$ бесконечно малая.

Следует, однако, понимать, что при таком определении предела нужно отдельно определять понятие бесконечно малой последовательности, а именно, бесконечно малой называть такую последовательность $\left\{ x_n\right\}$, что для любого $\varepsilon > 0$ найдется номер $N = N(\varepsilon) \in \mathbb{N}$, такой, что при любом $n \geq N$ справедливо неравенство $|x_n| < \varepsilon$.

Теорема (свойства бесконечно малых последовательностей).
1) Сумма и произведение конечного числа бесконечно малых последовательностей являются бесконечно малыми последовательностями.
2) Произведение бесконечно малой последовательности на ограниченную является бесконечно малой последовательностью.

Доказательство. Свойство 1) следует из арифметических свойств переделов (теорема 7).

Докажем 2). Пусть $\left\{a_n\right\}$ — бесконечно малая, а $\left\{x_n\right\}$ ограниченная последовательности. Обозначим $\beta_n = a_nx_n$. Поскольку $\left\{x_n\right\}$ ограничена, то существует такое $A > 0$, что $|x_n| \leq A$ при любом $ n \in \mathbb{N}$. Зададим $\varepsilon > 0$ и, пользуясь тем, что $\left\{a_n\right\}$ бесконечно малая, найдем такой номер $N$, что при всех $n \geq N$ справедливо неравенство $|a_n| < \frac{\varepsilon}{A}$. Тогда для $n \geq N$ получим $|\beta_n| = |a_n|$ $|x_n| \leq A$ $|a_n| < \varepsilon$, а это означает, что последовательность $\left\{\beta_n\right\}$ бесконечно малая. $\small\Box$

Бесконечно большие последовательности

Выше мы показали, что каждая сходящаяся последовательность ограничена. Иначе говоря, всякая неограниченная последовательность расходится. Мы выделим некоторые специальные классы неограниченных последовательностей.

Определение. Говорят, что последовательность $\left\{x_n\right\}$ стремится к $+\infty$, если для любого действительного числа $M$ найдется номер $N$, зависящий, вообще говоря, от $M$, такой, что для всех $n \geq N$ справедливо неравенство $x_n > M$. В этом случае пишут $\lim\limits_{n\to\infty} x_n = +\infty$, или $x_n \rightarrow + \infty$ при $n \rightarrow \infty$.

Говорят, что последовательность $\left\{x_n\right\}$ стремится к $-\infty$, если для любого действительного числа $M$ найдется номер $N$, зависящий, вообще говоря, от $M$, такой, что для всех $n \geq N$ справедливо неравенство $x_n < -M$. В этом случае пишут $\lim\limits_{n\to\infty} x_n = -\infty$, или $x_n \rightarrow -\infty$ при $n \rightarrow \infty$.

Последовательность $\left\{x_n\right\}$ называется бесконечно большой, если модули её элементов стремятся к $+\infty$ $(\lim\limits_{n\to\infty} |x_n| = +\infty)$, т.е. если для любого $M$ найдется номер $N$, такой, что для всех $n \geq N$ справедливо неравенство $|x_n| > M$. Обозначают это так: $\lim\limits_{n\to\infty} x_n = \infty$, или $x_n \rightarrow \infty$ при $n \rightarrow \infty$.

Иллюстрация

Ясно, что каждое из условий $\lim\limits_{n\to\infty} x_n = +\infty$, или $\lim\limits_{n\to\infty} x_n = -\infty$ влечет $\lim\limits_{n\to\infty} x_n = \infty$. Обратное неверно. Например, последовательность $x_n = (-1)^nn$ стремится к $\infty$, но не стремится ни к $+\infty$, ни к $-\infty$.

Напомним, что неограниченная последовательность $\left\{x_n\right\}$ — это такая, что для любого $M$ найдется такой номер $n$, что $|x_n| > M$. Ясно, что каждая бесконечно большая последовательность неограничена, но обратное неверно. Например, последовательность $x_n = n^{(-1)^n}$ неограничена, но не является бесконечно большой.

Связь между бесконечно большими и бесконечно малыми последовательностями устанавливает следующее

Утверждение. Пусть $x_n \neq 0$ $(n = 1, 2,\dots)$. Тогда последовательность $\left\{x_n\right\}$ бесконечно большая в том и только в том случае, когда последовательность $ a_n = \frac{1}{x_n} $ бесконечно малая.

Доказательство этого утверждения сразу следует из эквивалентности двух следующих неравенств: $|a_n| < \varepsilon$ и $|x_n| = |\frac{1}{a_n}| > \frac{1}{\varepsilon}$. Например, если $\left\{x_n\right\}$ — бесконечно большая, то для заданного $\varepsilon > 0$ найдем такой номер $N$, что для всех $n \geq N$ справедливо неравенство $|x_n| > \frac{1}{\varepsilon}$. Тогда для $n \geq N$ будем иметь $|a_n| = |\frac{1}{x_n}| < \varepsilon$, а это и означает, что последовательность $\left\{a_n\right\}$ бесконечно малая.

Доказательство обратного утверждения аналогично.$\small\Box$

Некоторые виды неопределенностей.

Пусть $x_n \rightarrow +\infty$, $y_n \rightarrow +\infty$. Тогда легко убедится в том, что $x_n + y_n \rightarrow +\infty$ и $x_ny_n \rightarrow +\infty$. Однако, об $x_n — y_n$ ничего определенного сказать нельзя. Так, например, если $x_n = n^2 \rightarrow +\infty$, $y_n = n \rightarrow +\infty$, то $x_n — y_n = n^2 — n \geq n$ $(n \geq 2)$ и $x_n — y_n \rightarrow +\infty$. Для $x_n = n, y_n = n^2$ имеем $x_n — y_n = n — n^2 \geq -n$ и $x_n — y_n \rightarrow -\infty$. Если же $x_n = n \rightarrow +\infty$, $y_n = n + (-1)^n \rightarrow + \infty$, то последовательность $x_n — y-n = (-1)^{n+1}$ не имеет предела.

Говорят, что разность двух стремящихся к $+\infty$ последовательностей составляет неопределенность вида $\left[(+\infty) — (+\infty)\right]$. Другой вид неопределенности $\left[\frac{\infty}{\infty}\right]$ — отношение двух стремящихся к $\infty$ последовательностей, т.е. $\frac{x_n}{y_n}$, где $x_n \rightarrow \infty $, $y_n \rightarrow \infty $. Вы самом деле, для $x_n = n^2$, $y_n = n$ имеем $\frac{x_n}{y_n} = n \rightarrow \infty $, $\frac{y_n}{x_n} = \frac{1}{n} \rightarrow 0$. Если же $x_n = (2 + (-1)^n)n$, $y_n = n$, то отношение $\frac{x_n}{y_n} = 2 + (-1)^n$, очевидно, не имеет предела.

Так как обратная к бесконечно большой является бесконечно малой последовательностью, то получаем еще такие виды неопределенностей: $\left[0 \cdot \infty\right] = \left[\frac{1}{\infty} \cdot \infty\right] = \left[\frac{\infty}{\infty}\right] = \left[\frac{0}{0}\right]$. Приведите соответствующие примеры.

Комментарий

По данной теме существует множество примеров, в которых встречаются вышеописанные неопределенности. Раскрыть их позволяют эквивалентные бесконечно малые последовательности. Читателю может ознакомиться с ними ниже.

Эквивалентные бесконечно малые последовательности

Определение. Две бесконечно малые последовательности $\left\{\alpha_n\right\}$ и $\left\{\beta_n\right\}$ называются эквивалентными, если $\lim\limits_{n\to\infty} \frac{\alpha_n}{\beta_n} = 1$. Пишут так: $\alpha_n \sim \beta_n$.

При $n \rightarrow 0$ справедливы следующие отношения эквивалентности (как следствия из так называемых замечательных пределов):

  • $\sin{n} \sim n, $
  • $\tan{n} \sim n, $
  • $1-\cos{n} \sim \frac{1}{2}n^2, $
  • $\frac{\pi}{2} — \arccos{n} \sim n, $
  • $\arcsin{n} \sim n, $
  • $\arctan{n} \sim n, $
  • $a^n-1 \sim n \ln{a}, $
  • $\log_a(1+n) \sim \frac{n}{\ln{a}}, $
  • $(1+n)^\alpha — 1 \sim \alpha \cdot n.$

Примеры решения задач

Рассмотрим примеры задач, в которых фигурируют бесконечно малые и бесконечно большие последовательности. Читателю с целью самопроверки предлагается решить данные примеры самому, а затем сверить свое решение с приведенным.

  1. Определить будет ли последовательность $x_n = \frac{n}{n^2 + 1}$ бесконечно малой.
    Решение

    Найдем предел $\lim\limits_{n\to\infty} \frac{n}{n^2 + 1} = \lim\limits_{n\to\infty} \frac{\frac{n}{n^2}}{\frac{n^2 + 1}{n^2}} = \lim\limits_{n\to\infty} \frac{n}{n^2 + 1} = \lim\limits_{n\to\infty} \frac{0}{1 + \frac{1}{n^2}} = $ $ = \lim\limits_{n\to\infty} \frac{0}{1 + 0} = 0.$

    Предел последовательности равен нулю, а значит она бесконечно малая.

  2. Доказать, что $\lim\limits_{n\to\infty}\frac{(-1)^n}{n} = 0$.
    Решение

    Последовательность $(-1)^n$ ограничена, а $\frac{1}{n}$ бесконечно малая, так как $\lim\limits_{n\to\infty} \frac{1}{n} = 0$. Согласно теореме о свойствах бесконечно малых последовательностей, произведение бесконечно малой последовательности на ограниченную будет бесконечно малой последовательностью, значит и $\lim\limits_{n\to\infty}\frac{(-1)^n}{n} = 0$.

  3. Доказать, что $x_n = \frac{1}{n^4}$ бесконечно малая.
    Решение

    Так как $x_n = \frac{1}{n^4} = \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n}$ и $\lim\limits_{n\to\infty}\frac{1}{n} = 0$, имеем произведение конечного числа бесконечно малых последовательностей. По теореме о свойствах бесконечно малых, последовательность $x_n$ — бесконечно малая.

  4. Доказать, что $\lim\limits_{n\to\infty}(-1)^n2^n = \infty$.
    Решение

    Докажем, что последовательность бесконечно большая. Согласно определению, последовательность $\left\{x_n\right\}$ называется бесконечно большой, если для любого $M$ найдется номер $N$, такой, что для всех $n \geq N$ справедливо неравенство $|x_n| > M$. Найдем этот номер $N$.

    $|(-1)^n2^n| \geq M$, значит $2^n \geq M$. Прологарифмировав обе части неравенства по основанию $2$, получаем $n \geq \log_2M$.

    Выберем наименьшее $N$, удовлетворяющее данному условию, а это $N = [|\log_2M|] + 1$.

    Так как $N$ существует, последовательность будет бесконечно большой, а значит и $\lim\limits_{n\to\infty}(-1)^n2^n = \infty$.

  5. Найти предел последовательности $x_n = \frac{\ln(1+\frac{1}{n})}{4^{\frac{1}{n}} — 1}$.
    Решение

    Сделаем замену $\frac{1}{n} = x$ и тогда $x \rightarrow 0$.

    $\lim\limits_{n\to\infty} \frac{\ln(1+\frac{1}{n})}{4^{\frac{1}{n}} — 1} = \lim\limits_{x\to 0} \frac{\ln(1+x)}{4^x-1} = [\frac{\infty}{\infty}]$.

    Воспользуемся эквивалентными бесконечно малыми последовательностями для раскрытия неопределенности.

    $\lim\limits_{x\to 0} \frac{\ln(1+x)}{4^x-1} \sim \lim\limits_{x \to 0} \frac{x}{x\ln4} = \frac{1}{\ln4}$.

Литература

  1. Лысенко З.М. Конспект лекций по математическому анализу
  2. Коляда В.И., Кореновский А. А. Курс лекций по математическому анализу.- Одесса : Астропринт , 2009. с. 24-26.
  3. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 1 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1962. — 607 с. — c. 47-56.
  4. Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа: Учеб. пособие для вузов. – 3-е изд., исправл. / А. М. Тер-Крикоров, М. И. Шабунин. – Москва: ФИЗМАТЛИТ, 2001. – 672 с. — С. 45-50.

Бесконечно малые и бесконечно большие последовательности

Пройдите этот тест для проверки своих знаний вышеизложенного материала.

4.6 Свойство промежуточных значений

Теорема Больцано – Коши (о корне). Пусть функция $f$ непрерывна на отрезке $\left[a, b\right]$ и на концах этого отрезка принимает значения разных знаков. Тогда существует точка $c \in \left(a, b\right)$, такая, что $f\left(c\right) = 0$.

Применяем метод деления отрезка пополам и лемму Кантора о вложенных отрезках. Пусть, например, $f\left(a\right)<0<f\left(b\right)$. Обозначим $\left[a_0, b_0\right] \equiv \left[a, b\right]$ и разделим $\left[a_0, b_0\right]$ пополам точкой $c_0 =\displaystyle\frac{a_0+b_0}{2}$. Если $f\left(c_0\right) = 0$, то теорема доказана. В противном случае из двух полученных отрезков $\left[a_0, c_0\right]$ и $\left[c_0, b_0\right]$ выберем такой, что на его концах функция f принимает значения разных знаков. Это будет отрезок $\left[a_1, b_1\right] \equiv \left[a_0, b_0\right]$, если $f \left(c_0\right) > 0$, и $\left[a_1, b_1\right] \equiv \left[c_0, b_0\right]$, если $f \left(c_0\right) < 0$. Заметим, что длина отрезка$\left[a_1, b_1\right]$ равна $b_1 − a_1$ = $\displaystyle\frac{b-a}{2}$. На следующем шаге разделим $\left[a_1, b_1\right]$ пополам и продолжим описанную процедуру. Если на каком-либо шаге встретится точка деления, в которой функция $f$ обращается в нуль, то теорема доказана. В противном случае получим последовательность вложенных друг в друга отрезков $\left[a_n, b_n\right]$, таких, что их длины $b_n − a_n =\displaystyle\frac{b−a}{2^n} \rightarrow 0 \;при\; n \to \infty$. По лемме Кантора, существует точка c, принадлежащая всем $\left[a_n, b_n\right]$. Покажем, что $f\left(c\right) = 0$. Отсюда, в частности, будет следовать, что $c$ не совпадает ни $с\;a$, ни $с\;b$, т. к. $f\left(a\right) \neq 0$ и $f\left(b\right) \neq 0$.
Для доказательства равенства $f\left(c\right) = 0$ покажем, что для всех $n$ справедливо неравенство
$$\begin{equation}\label{eq:exp1}f \left(a_n\right) < 0 < f \left(b_n\right)\end{equation}.$$
Применим индукцию по $n$. При $n = 0$ неравенство $\eqref{eq:exp1}$ совпадает с принятым условием $f\left(a\right)<0<f\left(b\right)$. Предположим, что неравенство $\eqref{eq:exp1}$ справедливо при некотором $n$, и покажем, что оно имеет место и для $n + 1$. Обозначим $c_n =\displaystyle\frac{a_n+b_n}{2}$. Тогда, согласно описанной процедуре отбора сегментов, мы полагаем $\left[a_n+1, b_n+1\right] \equiv \left[a_n, c_n\right]$, если $f \left(c_n\right) > 0$, и $\left[a_n+1, b_n+1\right] \equiv \left[c_n, b_n\right]$, если $f \left(c_n\right) < 0$. Отсюда легко видеть, что неравенство $\left(4.5\right)$ справедливо и при $n + 1$, и тем самым $\eqref{eq:exp1}$ доказано для всех $n = 0, 1, \dotsc.$
Далее, поскольку $a_n \leqslant c \leqslant b_n \left ( n = 0, 1, \dotsc\right )$ и $b_n − a_n \rightarrow 0 \left(n \to \infty \right)$, то $a_n \rightarrow c \left(n \to \infty \right)$ и $b_n \rightarrow c \left(n \to \infty \right)$. В силу непрерывности функции $f$ в точке $c$, из неравенств $f\left(a_n\right) < 0$ следует, что и $f\left ( c\right ) = \lim_\limits{n \to \infty}f \left(a_n\right) \leqslant 0$.
С другой стороны, поскольку $f \left(b_n\right) > 0$, то и $f\left ( c\right ) = \lim_\limits{n \to \infty}f \left(b_n\right) \leqslant 0$.
Итак, получили, что $f\left(c\right) \leqslant 0$ и $f(c) \geqslant 0$. Отсюда следует, что $f\left(c\right) = 0$.

Следствие (свойство промежуточных значений). Пусть функция $f$ непрерывна на отрезке $\left[a, b\right]$. Тогда функция $f$ принимает все значения, заключенные между $f\left(a\right)$ и $f\left(b\right)$. Именно, для любого числа $A$, заключенного между $f\left(a\right)$ и $f\left(b\right)$, найдется такая точка $c \in \left[a, b\right]$, что $f\left(c\right) = A$.

Для доказательства этого следствия достаточно применить теорему Больцано – Коши к функции $g\left(x\right) = f\left(x\right) − A$.
Утверждение, обратное данному следствию, неверно. В этом легко убедиться на примере функции $$\left\{\begin{matrix}
x,    x\in\mathbb{Q}\cap \left[0,1\right]\\
1-x, x \in \left[0,1\right] \setminus \mathbb{Q}
\end{matrix}\right.$$Если же функция $f$ монотонна на $\left[a, b\right]$, то, как показывает теорема $3$, данное следствие можно обратить. Таким образом, из теоремы $3$ и свойства промежуточных значений мы получаем следующий критерий непрерывности монотонной функции.

Теорема. Монотонная на отрезке $\left[a, b\right]$ функция $f$ непрерывна на этом отрезке тогда и только тогда, когда она принимает все промежуточные значения между $f\left(a\right)$ и $f\left(b\right)$.

Пример. Покажем, что каждый многочлен нечетной степени имеет по крайней мере один действительный корень. Пусть $P_{2k+1}\left(x\right) = a_0x^{2k+1} + a_1x^{2k} + \cdots + a_{2k+1}$, причем можем считать, что $a_0 > 0$. Тогда, очевидно, $\lim_\limits{x\to-\infty }P_{2k+1}\left(x\right ) = -\infty$, а значит, существует такое $a$, что $P_{2k+1}\left(a\right ) < 0$. Далее, поскольку $\lim_\limits{x\to+\infty }P_{2k+1}\left(x\right ) = +\infty$,то найдется такое $b > a$, что $P_{2k+1}\left(a\right ) > 0$. Поскольку многочлен $P_{2k+1}$ непрерывен на $\left[a, b\right]$, то, в силу теоремы Больцано-Коши, найдется такое $c \in \left(a,b\right)$, что $P_{2k+1}\left(c\right ) =0$.

Примеры

  1. Пусть функция $f(x)=x^{2}$ определенна и непрерывна на отрезке $[-2,2]$.
    Посчитаем значение функции в точках: $x=-0,75$, $x=0,25$, $x=1,5$.

    Решение

    Мы знаем что данная функция непрерывна на данном отрезке (в силу того что это полиномиальная функция), а значит, в силу второй теоремы Коши, она принимает все свои промежуточные значения и ее значения в указанных точках равны:
    $f(-0,75)=0,5625$, $f(0,25)=0,0625$, $f(1,5)=2,25$.

  2. Докажите, что многочлен нечетной степени всегда имеет корень.
    Указание. Представьте многочлен $p\left(x\right)=a_nx^n+a_{n−1}x^{n−1}+\cdots+a_1x+a_0$ в виде $p\left(x\right)=x^n\left(a_n+\displaystyle\frac{a_{n−1}}{x}+\displaystyle\frac{a_{n−2}}{x^2}+\cdots+\displaystyle\frac{a_1}x^{n−1}+\displaystyle\frac{a_0}{x^n}\right)$ и покажите, что при $x$, больших по модулю, он принимает как положительные, так и отрицательные значения.

    Решение

    Без ограничений общности $a_n > 0$. $\lim_\limits{x\to+\infty}\left(x^n\left(a_n+\cdots+\displaystyle\frac{a_0}{x^n}\right)\right)$ — есть величина положительная.Если устремить $x$ в минус бесконечность,то $p\left(x\right)$. Есть величина отрицательная. Значит можем выбрать точки $a,b$(большие по модулю и $a_0$) такие, что $p\left(a\right)0$
    Многочлен нечетной степени есть непрерывная функция.
    По теореме Больцано-Коши существует $c\in\left[a,b\right]$
    такая, что $p\left(c\right) = 0$
    Значит как минимум один корень есть.

Литература

Смотрите также

  1. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: учеб. пособие для ун-тов и пед. ин-тов. Т. 2 / Г. М. Фихтенгольц. — 5-е изд., стереотип. — Москва: Физматгиз, 1970 (стр.134, 171)
  2. Кудрявцев Л. Д. Курс математического анализа : учебник для вузов: В 3 т. Т. 1. Дифференциальное и интегральное исчисления функций одной переменной / Л. Д. Кудрявцев. — 5-е изд., перераб. и доп. — Москва: Дрофа, 2003 (стр.216)

Свойство промежуточных значений

Пройдя этот тест, вы закрепите пройденный ранее материал по теме «Свойство промежуточных значений»

М1719. Последовательность

Задача из журнала «Квант» (2000 год, 1 выпуск)

Условие

Последовательность $a_{1}$, $a_{2}$, $a_{3}$, $\ldots$ задана своим первым членом $a_{1} = 1$ и рекуррентной формулой $\displaystyle a_{n+1} = a_{n} + \frac{1}{a_{n}}$, где $n = 1, 2, 3, \ldots$

  1. Докажите, что $a_{100} > 14$.
  2. Найдите $\lbrack a_{1000}\rbrack$, то есть укажите такое целое число $m$, для которого $m \leqslant a_{1000} < m + 1$.
  3. Докажите существование и найдите значение предела $\displaystyle\lim\limits_{n \to \infty} \frac{a_{n}}{\sqrt{n}}$.

Решение

  1. Возводим равенство $\displaystyle a_{n+1} = a_{n} + \frac{1}{a_{n}}$ в квадрат и «отбрасываем лишнее»: $$a_{n+1}^{2} = a_{n}^{2} + 2 + \frac{1}{a_{n}^{2}} > {a_{n}^{2}} + 2.$$ Вспомнив, что $a_{1}^{2} = 1$, получаем одно за другим неравенства $a_{2}^{2} > a_{1}^{2} + 2 = 3$, $a_{3}^{2} > a_{2}^{2} + 2 > 3 + 2 = 5$, и вообще (при $n > 1$), $$\begin{equation}\label{m1719_first} a_{n}^{2} > 2n — 1\end{equation}.$$ В частности, $a_{100}^{2} > 199 > 196 > 14^{2}$, что и требовалось.
  2. Ответ: $\lbrack a_{1000}\rbrack = 44$.

    При $n = 1000$ неравенство $\eqref{m1719_first}$ дает $a_{1000}^{2} > 1999 > 44^{2}$, так что $\lbrack a_{1000}\rbrack \geqslant 44$. Чтобы получить оценку сверху, введем величины $b_{n}$, такие что $a_{n}^{2} = 2n — 1 + b_{n}$. В силу неравенства $\eqref{m1719_first}$, имеем $b_{n} > 0$ при $n > 1$. Далее, запишем формулу $\displaystyle a_{n+1}^{2} = a_{n}^{2} + 2 + \frac{1}{a_{n}^{2}}$ в виде
    $$2n + 1 + b_{n+1} = 2n — 1 + b_{n} + 2 + \frac{1}{2n — 1 + b_{n}},$$
    откуда
    $$b_{n+1} = b_{n} + \frac{1}{2n — 1 + b_{n}} \leqslant b_{n} + \frac{1}{2n — 1}.$$

    По индукции из последнего неравенства следует, что
    $$b_{n+1} \leqslant b_{1} + \frac{1}{1} + \frac{1}{3} + \ldots + \frac{1}{2n — 3} + \frac{1}{2n — 1}. $$
    Поскольку $b_{1} = 0$, имеем, в частности,
    $$b_{1000} \leqslant 1 + \frac{1}{3} + \frac{1}{5} + \ldots + \frac{1}{1995} + \frac{1}{1997}.$$
    Осталось оценить сумму, оказавшуюся в правой части последнего неравенства. Сгруппируем слагаемые:
    $$b_{1000} \leqslant 1 + \left(\frac{1}{3} + \frac{1}{5} + \frac{1}{7}\right) + \left(\frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} + \ldots + \frac{1}{25}\right) + \\ + \left(\frac{1}{27} + \frac{1}{29} + \frac{1}{31} + \frac{1}{33} + \ldots + \frac{1}{79}\right) + \left(\frac{1}{81} + \frac{1}{83} + \ldots + \frac{1}{241}\right) + \\ + \left(\frac{1}{243} + \frac{1}{245} + \ldots + \frac{1}{727}\right) + \left(\frac{1}{729} + \frac{1}{731} + \ldots + \frac{1}{1997}\right).$$
    (Принцип очень простой: в первой скобке три слагаемых, наибольшее из которых равно $\displaystyle\frac{1}{3}$; во второй — девять, наибольшее из которых $\displaystyle\frac{1}{9}$; …; в пятой — $243$ слагаемых, наибольшее $\displaystyle\frac{1}{243}$; наконец, в шестой скобке наибольшее слагаемое равно $\displaystyle\frac{1}{729}$, а слагаемых всего лишь $635$.) Следовательно, $b_{1000} < 7$. Это позволяет утверждать, что $$a_{1000}^{2} < 2000 - 1 + 7 < 2025 = 45^2,$$ откуда $a_{1000} < 45$.

  3. Использованный при решении пункта б) прием позволяет доказать, что $\displaystyle\lim\limits_{n\to \infty}\frac{b_{n}}{n} = 0.$ Поскольку $a_{n} = \sqrt{2n — 1 + b_{n}}$, получаем ответ:
    $$\displaystyle\lim_{n \to \infty} \frac{a_{n}}{\sqrt{n}} = \sqrt{2}.$$

А. Спивак

Признак сравнения несобственных интегралов

Признак сравнения в форме неравенств

Теорема

Пусть функции $f$ и $g$ неотрицательны на $[a,b)$ и интегрируемы на каждом отрезке, содержащемся в $[a,b)$. Предположим, что $f(x)\leq g(x)$ для любого $x\in [a,b)$. Тогда:

  1. из сходимости интеграла $I_{2}=\int_{a}^{b}{g(x)dx}$ следует сходимость интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$;
  2. из расходимости интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$ следует расходимость интеграла $I_{2}=\int_{a}^{b}{g(x)dx}$;
Спойлер
  1. Из $ 0\leq f(x) \leq g(x)$ следует, что $\int_{a}^{\xi}{f(x)dx}\leq \int_{a}^{\xi}{g(x)dx}$ $(1)$, $\xi \in [a,b)$. Если сходится интеграл $I_{2}=\int_{a}^{b}{g(x)dx}$, т.е. существует конечный $\lim_{\xi \rightarrow b-0} \int_{a}^{\xi}{g(x)dx}=I_{2}$, где $I_{2}=sup_{a\leq\xi <b} \int_{a}^{\xi}{g(x)dx}$, то из $(1)$ следует, что $\forall \xi \in [a,b)$ выполняется неравенство $\int_{a}^{\xi}{f(x)dx} \leq I_{2}$. Таким образом для неотрицательной функции $f(x)$ выполняется условие $\exists C: \forall \xi \in [a,b) \rightarrow \int_{a}^{\xi}{f(x)dx}\leq C$ (критерий сходимости интегралов от неотрицательных функций). Следовательно, интеграл $I_{2}$ сходится.
  2. Пусть $I_{1}$ расходится. Предположим, что  $I_{2}$ сходится, тогда по первому пункту сходится и $I_{1}$, что противоречит условию, следовательно $I_{2}$ тоже расходится.

[свернуть]

Спойлер

Сходится ли интеграл? $$I_{1}=\int\limits_{1}^{+\infty}{\frac{\cos^{4}3x}{\sqrt[5]{1+x^{6}}}dx}$$

Так как $$0\leq \frac{\cos^{4}3x}{\sqrt[5]{1+x^{6}}}\leq \frac{1}{\sqrt[5]{1+x^{6}}}\leq \frac{1}{x^{6/5}}$$ при $x\geq 1$ $I_{2}=\int_{1}^{+\infty}{\frac{1}{x^{6/5}}dx} < \infty$ (сходится), т.к. $\alpha =\frac{6}{5}>1$. Тогда, если интеграл $I_{2}$ сходится, то из сходимости интеграла $I_{2}$ следует сходимость интеграла $I_{1}$.
Ответ: $I_{1}$ сходится.

[свернуть]

Признак сравнения в предельной форме

Теорема

Пусть функции $f(x) $ и $g(x) $ неотрицательны на $[a,b)$ и интегрируемы на каждом отрезке, содержащемся в $[a,b)$. Тогда, если для $\forall x \in [a,b)$ выполняются условие $f(x)\sim g(x)$ при $x\rightarrow b-0$  $(\lim_{x \rightarrow b-0}\frac{f(x)}{g(x)}=1)$. Тогда интегралы $I_{1}=\int_{a}^{b}{f(x)dx}$ и $I_{2}=\int_{a}^{b}{g(x)dx}$ сходятся или расходятся одновременно (ведут себя одинаково).

Спойлер

Согласно условию $\lim\limits_{x \rightarrow b-0}\frac{f(x)}{g(x)}=1:$ $$\forall \varepsilon >0 \exists \delta _{\varepsilon}>0: b-\delta <x<b \Rightarrow \left|\frac{f(x)}{g(x)}-1 \right| < \varepsilon$$ или, что то же самое $$\forall \varepsilon >0 \exists \delta (\varepsilon)\in [a,b):\forall x \in[\delta (\varepsilon ),b) \rightarrow \left|\frac{f(x)}{g(x)}-1 \right| < \varepsilon $$ Выберем $\varepsilon =\frac{1}{2}$, найдем $\delta (\frac{1}{2})=c$ такое, что $b-c<x<b$ $$\left|\frac{f(x)}{g(x)}-1 \right|<\frac{1}{2} \Leftrightarrow -\frac{1}{2}<\frac{f(x)}{g(x)}-1<\frac{1}{2}\Leftrightarrow$$ $$\Leftrightarrow \frac{1}{2}<\frac{f(x)}{g(x)}<\frac{3}{2}\Leftrightarrow \frac{1}{2}g(x)<f(x)<\frac{3}{2}g(x), \forall x \in [b-c,b]$$ Так как функции $f(x)$ и $g(x)$ не имеют особых точек на промежутке $[a,b)$, то интегралы $I_{1}$ и $I_{2}$ сходятся тогда и только тогда, когда сходятся интегралы соответственно от функций $f(x)$ и $g(x)$ на промежутке $[b-c,b)$. Если сходится интеграл $I_{2}$ (а значит и $\int_{b-c}^{b}{g(x)dx}$), то из равенства $f(x)<\frac{3}{2}g(x)$ по признаку сравнения в форме неравенств следует сходимость интеграла $\int_{b-c}^{b}{f(x)dx}$, а это равносильно сходимости интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$. Аналогично, из $\frac{1}{2}g(x)<f(x)$ заключаем, что из сходимости интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$ следует сходимость интеграла $I_{2}=\int_{a}^{b}{g(x)dx}$.
Если же один из интегралов расходится, например, $I_{1}$. Тогда предположим, что $I_{2}$ сходится, следовательно, по доказанному выше $I_{1}$ тоже должен сходиться, что противоречит условию, следовательно $I_{2}$ тоже расходится. Т.е. если один из интегралов расходится, то расходится и другой.

[свернуть]

Замечание

Если функция $f(x)$ интегрируема на отрезке $[a,\xi]$ при $\forall \xi \geq \alpha$ и если $f(x)\sim \frac{A}{x^{\alpha}}$ при $x\rightarrow +\infty$, где $A\neq 0$, то интеграл $\int_{\alpha }^{+\infty}{f(x)dx}$ сходится при $\alpha >1$ и расходится при  $\alpha \leq 1$.

Спойлер

Сходится ли интеграл? $$\int\limits_{0}^{1}{\frac{\ln(1+x)}{x^{2}}dx}$$
$$\int\limits_{0}^{1}{\frac{\ln(1+x)}{x^{2}}dx}=\left[\frac{\ln(1+x)}{x^{2}}\sim \frac{x}{x^{2}}=\frac{1}{x} \right]$$ (можем заменить функцию эквивалентной т.к. $\frac{\ln(1+x)}{x^{2}}\rightarrow 0$). Тогда интеграл $\int_{0}^{1}{\frac{dx}{x}}=\infty$ расходится (т.к. $\alpha =1$).
Ответ: интеграл расходится.

[свернуть]

Тест по теме: Признак сравнения несобственных интегралов

Этот тест покажет ваши знания по данной теме.

Таблица лучших: Тест по теме: Признак сравнения несобственных интегралов

максимум из 15 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных