Задача из журнала «Квант» (2000 год, 3 выпуск) М1707*

Условие

Квадрат клетчатой бумаги, состоящий из $n\times n$ клеток, разрезан на $2n$ прямоугольников. При этом каждый прямоугольник расположен либо целиком ниже, либо выше ступенчатой ломаной, разделяющей квадрат (рис.1). Докажите, что найдется клетка клетчатой бумаги, являющаяся одним из названных прямоугольников.

Рис. 1

Решение

Ступенчатая ломанная разрезает квадрат на два ступенчатых треугольника $T_1$ и $T_2$, при этом основание $T_1$ состоит из $n$ клеток, а основание $T_2$ – из $n – 1$ клетки. В силу условия задачи, один из них разрезан на $m$, а другой – на $k$ прямоугольников, причем $m + k = 2n$. Пока что фиксируем внимание на отдельно взятом ступенчатом треугольнике $T$, в основании которого $s$ клеток (рис.2). Так как при разрезании $T$ на прямоугольники любые две точки из набора $A_1, A_2, \ldots, A_s$ должны принадлежать разным прямоугольникам, можно заключить, что $T$ нельзя разрезать на менее чем $s$ прямоугольников.

Рис. 2

Разберем далее тот случай, когда $T$ разрезан в точности на s прямоугольников; тогда каждая из точек $A_1, A_2 , \ldots, A_s$ принадлежит только одному из них и, более того, каждая из $s$ закрашенных клеток принадлежит целиком только одному из $s$ прямоугольников. Не закрашенных клеток, примыкающих по сторонам к закрашенным, на единицу меньше, чем закрашенных, поэтому хотя бы один из $s$ прямоугольников не выйдет за пределы своей заштрихованной клетки, т.е. будет с ней совпадать. Возвращаясь к ступенчатым треугольникам $T_1$ и $T_2$, можно сказать, что $m \geq n$, а $k \geq n-1$. Но так как $m + k = 2n$, то либо $m = n$, либо $k = n – 1$. Значит, либо в $T_1$, либо в $T_2$ найдется прямоугольник, совпадающий с клеткой клетчатой бумаги.

В.Произволов

М1693. О пересекающихся окружностях

Задача о пересекающихся окружностях

Условие
Две окружности пересекаются в точках $Р$ и $Q$.Третья окружность с центром в точке $Р$ пересекает первую в точках $А$, $В$, а вторую – в точках $С$ и $D$ (см.рисунок). Докажите, что углы $\angle AQD$ и $\angle BQC$ равны.
http://ib.mazurok.com/wp-content/uploads/2018/06/1-2.svg
Решение
Треугольники $АРВ$ и $DPC$ равнобедренные. Обозначим углы при их основаниях $\angle АВР = \angle ВАР = \alpha$, $\angle DCP = \angle CDP = \beta$. Четырехугольники $AQBP$ и $DQCP$ вписанные, отсюда $\angle AQP = \angle ABP = \alpha$ и $\angle DQP = \angle DCP = \beta$ . Получаем: $∠AQD = \angle AQP + \angle DQP = \alpha + \beta$ . Далее, $ \angle BQP = \angle BAP = \alpha$, также $ \angle CQP = \beta и \angle BQC = \angle BQP + \angle CQP = \alpha + \beta$ . Значит, $\angle AQD = \angle BQC$.

А.Заславский

Задача из журнала «Квант» (2001 год, 6 выпуск) М1750

Условие

а) Взяли шесть бумажных квадратов, у каждого из которых длина стороны равна $1,$ и ими целиком оклеили поверхность куба с ребром $1.$ Докажите, что найдется бумажный квадрат, который целиком оклеил какую-либо грань куба.

б) Четырьмя бумажными равносторонними треугольниками, у каждого из которых длина стороны равна $1,$ целиком оклеили поверхность правильного тетраэдра с ребром $1.$ Обязательно ли найдется бумажный треугольник, который целиком оклеил какую-либо грань тетраэдра?

Решение

а) Обратим внимание на какую-либо, все равно какую, вершину куба. Так как сумма углов при ней равна $270^{\circ},$ найдется бумажный квадрат (хотя бы один), вершина которого совпала с этой вершиной куба.

Одним словом, у куба восемь вершин, и значит, не меньше восьми вершин у шести оклеивающих его бумажных квадратов совпадают с вершинами куба.

Откуда следует, что найдется бумажный квадрат, у которого по крайней мере две вершины совпадают с вершинами куба. Но тогда ясно, что все четыре вершины этого бумажного квадрата совпадают с четырьмя вершинами какой-либо грани куба, т.е. эта грань целиком оклеена бумажным квадратом. Можно дополнительно сообразить, что противоположная ей грань тоже непременно целиком оклеена каким-либо бумажным квадратом.

б) Вовсе необязательно. На рисунке показана развертка правильного тетраэдра $ABCD$ и такая его оклейка, что никакой из четырех бумажных треугольников не оклеивает целиком какую-либо грань этого тетраэдра.

В.Произволов

Задача из журнала «Квант» (2000 год, 1 выпуск) М1698

Задача

На сторонах треугольника $ABC$ расположены
точки $A’, B’$ и $C’$ (см. рисунок). При этом известно,что $AA’ \leq 1, BB’ \leq 1$ и $CC’ \leq 1$.
Докажите, что площадь треугольника не превосходит $\displaystyle\frac{1}{\sqrt{3}}$.

Решение

Пусть треугольник $АВС$ неостроугольный: $\angle BAC \geq \displaystyle\frac{\pi}{2}$. Тогда $AB \leq B’B \leq 1, h_c \leq CC’ \leq 1$ и $S_{\triangle ABC} \leq \displaystyle\frac{1}{2} < \displaystyle\frac{1}{\sqrt{3}}$.

В случае остроугольного $\triangle ABC$ высоты опущены на сами стороны (а не на их продолжения). Если $\angle BAC$ – наименьший угол треугольника, то, очевидно, $\angle BAC \leq \displaystyle\frac{\pi}{3}$.
Поскольку $h_a \leq 1$, то из этого следует, что $\text{min} \{AB, AC\} \leq \displaystyle\frac{2}{\sqrt{3}}$.
Значит, $S_{\triangle ABC} \leq \displaystyle\frac{1}{\sqrt{3}}$.

В.Сендеров

Задача из журнала «Квант» (2001 год, 5 выпуск) M1788

Весёлый треугольник

Задача

В треугольнике $ABC$ точка $I$ — центр вписанной окружности $W$,$Q$,$D$ — точки ее касания со сторонами $BC$,$CA$,$AB$ (см. рисунок выше). Прямые $AB_1$ и $BQ$ пересекаются в точке $P$, $AC$ и $WD$ — в точке $M$, $BC$ и $QD$ — в точке $N$. Докажите, что прямые $IP$ и $MN$ перпендикулярны.

Решение

Построим на отрезках $IA$ и $IW$ как на диаметрах окружности. Отличная от $I$ точка $Y$ их пересечения будет основанием перпендикуляра, опущенного из $I$ на $AW$, а прямая $IN_1$ проходит через $N$, так как $IY$ — общая хорда этих двух окружностей, $BC$ — общая касательная первой из них и вписанной окружности треугольника, $QD$ — общая хорда второй и вписанной окружностей. Из подобия прямоугольных треугольников $INW$ и $IWY$ получаем $IN \cdot IY = r^2$, где $r$ — радиус вписанной окружности. Аналогично получаем, что прямая $IM$ перпендикулярная $BQ$, и для точки пересечения $M_1$: $IM \cdot IM_1 = r^2$. Следовательно, треугольник $IM_1Y$ подобен треугольнику $INM$ и вписан в окружность с диаметром $IP$. Поэтому $\angle M_1IP + \angle INM = \angle M_1YP + \angle IYM_1 = 90^{\circ}.$

Что и хотели доказать.

А. Заславский