Задача из журнала «Квант» (2000 год, 1 выпуск) М1698

Задача

На сторонах треугольника $ABC$ расположены
точки $A’, B’$ и $C’$ (см. рисунок). При этом известно,что $AA’ \leq 1, BB’ \leq 1$ и $CC’ \leq 1$.
Докажите, что площадь треугольника не превосходит $\displaystyle\frac{1}{\sqrt{3}}$.

Решение

Пусть треугольник $АВС$ неостроугольный: $\angle BAC \geq \displaystyle\frac{\pi}{2}$. Тогда $AB \leq B’B \leq 1, h_c \leq CC’ \leq 1$ и $S_{\triangle ABC} \leq \displaystyle\frac{1}{2} < \displaystyle\frac{1}{\sqrt{3}}$.

В случае остроугольного $\triangle ABC$ высоты опущены на сами стороны (а не на их продолжения). Если $\angle BAC$ – наименьший угол треугольника, то, очевидно, $\angle BAC \leq \displaystyle\frac{\pi}{3}$.
Поскольку $h_a \leq 1$, то из этого следует, что $\text{min} \{AB, AC\} \leq \displaystyle\frac{2}{\sqrt{3}}$.
Значит, $S_{\triangle ABC} \leq \displaystyle\frac{1}{\sqrt{3}}$.

В.Сендеров

Задача из журнала «Квант» (2001 год, 5 выпуск) M1788

Условие


В треугольнике $ABC$ точка $I$ — центр вписанной окружности $A1$,$B1$,$C1$ — точки ее касания со сторонами $BC$,$CA$,$AB$ (рис.1). Прямые $AB1$ и $BB1$ пересекаются в точке $P$, $AC$ и $A1C1$ — в точке $M$, $BC$ и $B1C1$ — в точке $N$. Докажите, что прямые $IP$ и $MN$ перпендикулярны.

Решение


Построим на отрезках $IA$ и $IA1$ как на диаметрах окружности. Отличная от $I$ точка $N1$ их пересечения будет основанием перпендикуляра, опущенного из $I$ на $AA1$, а прямая $IN1$ проходит через $N$, так как $IN1$ — общая хорда этих двух окружностей, $BC$ — общая касательная первой из них и вписанной окружности треугольника, $B1C1$ — общая хорда второй и вписанной окружностей. Из подобия прямоугольных треугольников $INA1$ и $IA1N1$ получаем $IN*IN1 = r^2$, где $r$ — радиус вписанной окружности. Аналогично получаем, что прямая $IM$ перпендикулярная $BB1$, и для точки пересечения $M1$: $IM*IM1 = r^2$. Следовательно, треугольник $IM1N1$ подобен треугольнику $INM$ и вписан в окружность с диаметром $IP$. Поэтому $\angle M1IP + \angle INM = \angle M1N1P + \angle IN1M1 = 90^{\circ}.$
Что и хотели доказать.

А. Заславский

Задачa из журнала «Квант» (2001 год, 2 выпуск) M1767

Условие

Внутри квадрата $ABCD$ расположены точки $P$ и $Q$ так, что $\angle PAQ = \angle PCQ = 45 ^{\circ}$ (рис.1). Докажите, что $PQ^{2} = BP^{2} + QD^{2}$.

Решение

Симметрично отразим $\triangle APB $ относительно прямой $AP$, a $\triangle AQD $ — относительно прямой $AQ$. При этом отраженные точки $B$ и $D$ «склеятся» в одну точку $M$ (рис.2). Затем симметрично отразим $\triangle CPB $ относительно прямой $CP$, а треугольник $CQD$ — относительно прямой $CQ$. При этом отраженные точки $B$ и $D$ «склеятся» в одну точку $N$.

Заметим, что $\angle PMQ + \angle QNP = 180^{\circ}$, но так как треугольники $PMQ$ и $QNP$ равны, то $\angle PMQ = \angle QNP$, т.е. $\angle PMQ = 90^{\circ}$.

Значит, треугольник $PMQ$ прямоугольный и $PM^{2} + QM^{2} = PQ^{2}$. Но $PM = BP$, а $QM = QD$, поэтому окончательно можно утверждать, что $PB^{2} + QD^{2} = PQ^{2}$.

В. Произволов

Задача из журнала «Квант» (2000 год, 4 выпуск) М1737

Параллелограмм в окружности

Условие

Хорды $AC$ и $BD$ окружности с центром $O$ пересекаются в точке $K$ (рис.$1$). Точки $M$, $N$ — центры окружностей, описанных около треугольников $AKB$ и $CKD$. Докажите, что $OMKN$ — параллелограмм.

А.Заславский

Решение

Пусть $X$ — середина $KB$ (рис.$2$). Тогда $\angle KMX=\displaystyle\frac{1}{2}\angle KMB=\angle KAB=\angle KDC$. Поскольку $MX\bot BD$, то $KM\bot CD$. Так как при этом $ON\bot CD$, то $ON\|KM$. Аналогично, $OM\|KN$. Если точки $O$, $K$, $M$, $N$ не лежат на одной прямой, то $OMKN$ — параллелограмм и $OM=KN$. В противном случае рассмотрим ортогональные проекции отрезков $OM$ и $KN$ на $AC$. Так как точки   $O$, $M$, $N$ проектируются в середины отрезков $AC$, $AK$ и $KC$ соответственно, то проекции обоих параллельных отрезков равны $\displaystyle\frac{KC}{2}$, следовательно, равны и длины самих отрезков.

Задача из журнала «Квант» (1999 год, 3 выпуск) М1689

Задача об арифметической прогрессии

Условие
Арифметическая прогрессия из натуральных чисел содержит не менее трех членов, их произведение – делитель некоторого числа $n^2 + 1$.

  1. Докажите, что существует такая прогрессия с разностью $12$.
  2. Докажите, что такой прогрессии с разностью $10$ или $11$ не существует.
  3. * Какое наибольшее число членов может содержать такая прогрессия с разностью $12$?

Решение

  1. Рассмотрим числа $1$, $13$, $25$; для них $5^2 + 1 = 13\cdot2$,
    $7^2 + 1 = 25 \cdot 2$. Число $57^2 + 1$ делится на $13\cdot25$: к этому легко придти непосредственно, а общий метод см. ниже.
  2. Из трех чисел $а$, $а + 10$, $а + 20$ одно делится на $3$, а $n^2 + 1$ на $3$ не делится.
    Случай разности $11$ рассматривается аналогично.
  3. Ни один из членов прогрессии не делится на $7$, ибо на $7$ не делится $n^2 + 1$. Значит, из семи членов прогрессии (если бы такая была) можно было бы выбрать два, разность которых делится на $7$. Получили противоречие:
    $k\cdot 12$ кратно $7$ (пишут: $k\cdot 12 \vdots 7$), где $0 < k < 7$.

Докажем, что прогрессия из шести членов есть:

$\left(5, 17, 29, 41, 53, 65\right)$.

Нам нужно доказать существование такого числа $n$, что $n^2 + 1$ делится на
$$\begin{equation}\label{eq:exp1}5\cdot17\cdot 29\cdot 41\cdot 53\cdot 65 = \left( 25\right) \cdot 17\cdot 29\cdot 41\cdot 53\cdot 13.\end{equation}$$
Каждое из шести чисел в правой части $\eqref{eq:exp1}$ обладает
нужным свойством:

$\left(7 + 25x\right)^2 + 1 \vdots 25$, $\left(4 + 17y\right)^2+ 1 \vdots 17$,

$\left(12 + 29z\right)^2 + 1 \vdots 29$, $\left(9 + 41u\right)^2+ 1 \vdots 41$,

$\left(23 + 53v\right)^2 + 1 \vdots 53 \left( так \;как \;23^2 + 1 = 530\right),$

$\left(5 + 13w\right)^2+ 1 \vdots 13$.

Теперь нам понадобится предложение, известное как «китайская теорема об остатках».

Теорема. $a_1, \dotsc , a_m —$ натуральные числа, каждые
два из которых взаимно просты, $r_1, \dotsc , r_m —$произвольные целые числа. Тогда существуют целые числа $x_1, \dotsc , x_m$ такие, что

$a_1x_1+r_1=\dotsc=a_mx_m+r_m$.
При $m = 2$ теорема доказывается с помощью алгоритма Евклида, после чего ее утверждение распространяется на общий случай $m > 2$ по индукции.
Для окончания решения пункта в) достаточно применить теорему к системе уравнений $7 + 25x = 4 + 14y = \dotsc + 23+53v=5+13w$.

Дополнение. Существуют ли более длинные арифметические прогрессии, удовлетворяющие всем условиям нашей задачи? На этот вопрос нетрудно ответить с помощью результатов статьи «Суммы квадратов и целые гауссовы числа» (см. «Квант» №3 за 1999 год).Именно, легко показать, что разность любой прогрессии задачи обязана делиться на $12$. С другой стороны, выше мы показали, что разность любой такой прогрессии, содержащей не менее семи членов, должна делиться на $7$.
Прогрессия задачи с разностью $12\cdot7 = 84$ существует: с помощью статьи «Суммы квадратов…» и китайской теоремы об остатках легко показать, что делителем некоторого числа $n^2 + 1$ является произведение всех членов
прогрессии $\left(29, 113, 197, 281, 365, 449, 533, 617, 701,785\right)$.
Эта прогрессия содержит $10$ членов; $11$ же членов прогрессия задачи с разностью $84$ содержать не может: $84$ не делится на простое число $р = 4k + 3 = 11$.

В.Сендеров