М1574. Задача о связи радиусов описанных окружностей соответствующих треугольников шестиугольника и его полупериметра

Задача из журнала «Квант» (1996 год, 6 выпуск)

Условие

В выпуклом шестиугольнике ABCDEF AB||ED, BC||FE, CD||AF. Пусть R_A, R_C, R_E — радиусы окружностей, описанных около треугольников соответственно, а p — полупериметр шестиугольника. Докажите, что:
$$R_A+R_C+R_E\geq p$$

Иллюстрация к задаче

hexagon

Решение

Первое решение

Пусть длины сторон AB, BC, CD, DE, EF и FA равны a, b, c, d, e и f соответственно. Построим AP\perp BC, AS\perp EF, DQ\perp BC и DR\perp EF. Тогда PQRS — прямоугольник и BF\geq PS=QR. Следовательно, 2BF\geq PS+QR и тогда 2BF\geq (a\sin B+f\sin C)+(c\sin C+d\sin B) (мы воспользовались тем, что \angle A=\angle D, \angle B=\angle E, \angle C=\angle F).

Аналогично,
$$2DB\geq (c\sin A+b\sin B)+(e\sin B+f\sin A),$$
$$2FD\geq (e\sin C+d\sin A)+(a\sin A+b\sin C).$$

Запишем выражение для R_A, R_C, R_E:
$R_A=\frac{BF}{2\sin A}$, $R_C=\frac{DB}{2\sin C}$ и $R_A=\frac{FD}{2\sin B}$.

Таким образом,
$$4(R_A+R_C+R_E)\geq$$ $$\geq a(\frac{\sin B}{\sin A}+\frac{\sin A}{\sin B})+b(\frac{\sin B}{\sin C}+\frac{\sin C}{\sin B})+…\geq$$ $$\geq 2(a+b+…)=4p$$
следовательно, R_A+R_C+R_E\geq p. Равенство достигается тогда и только тогда, когда \angle A=\angle B=\angle C и BF\perp BC, то есть в случае правильного шестиугольника.

Н. Седракян

Второе решение

Рассматриваемый шестиугольник ABCDEF можно получить и некоего треугольника KLM, проведя прямые, параллельные сторонам этого треугольника.

Пусть KL=m, LM=k, MK=l, \angle LKM=\delta, высота к стороне LM равна h, коэффициенты подобия (гомотетин) треугольников KCB, DLE и AFM по отношению к треугольнику KLM равны соответственно x, y, z. Понятно, что
$x+y\leq 1$, $y+z\leq 1$, $x+z\leq 1$ $(*)$
(мы допускаем ниже и случаи равенства). Если R — радиус окружности, описанной около треугольника ABF,
$$R=\frac{BF}{2\sin\delta}\geq\frac{h(1-x)}{2\sin\delta}=\frac{S_KLM(1-x)}{2k\sin\delta}=\frac{lm}{k}(1-x).$$

Оценивая аналогично другие радиусы и выражая стороны шестиугольника через k, l, m, x, y, z, получим, что нам достаточно доказать неравенство
$$\frac{lm}{k}(1-x)+\frac{mk}{l}(1-y)+\frac{kl}{m}(1-z)\geq$$ $$\geq k(1+x-y-z)+l(1+z-x-y)+$$ $$+m(1+y-z-x).$$ $(**)$

Это неравенство линейно относительно . Но переменные неотрицательны и удовлетворяют еще условию $(*)$ (на самом деле они больше нуля и неравенства $(*)$ строгие, но мы несколько расширяем область их изменения). Областью изменения их является многогранник в координатном пространстве (x; y; z) с вершинами (0; 0; 0), (1; 0; 0), (0; 1; 0), (0; 0; 1), (\frac{1}{2}; \frac{1}{2}; \frac{1}{2}). Достаточно проверить, что неравенство $(**)$ выполняется в этих вершинах. Например, при x=y=z=\frac{1}{2} и при x=y=z=0 получаем неравенство
$$\frac{lm}{k}+\frac{mk}{l}+\frac{kl}{m}\geq k+l+m;$$
оно легко доказывается сложением очевидных неравенств
$\frac{kl}{m}+\frac{mk}{l}\geq 2k$, $\frac{kl}{m}+\frac{lm}{k}\geq 2l$, $\frac{lm}{k}+\frac{mk}{l}\geq 2m$.
Для остальных трех вершин неравенство $(**)$ очевидно.

И. Шарыгин

Замечание

Для центрально-симметричных шестиугольников эта задача эквивалентна замечательному неравенству Эрдеша-Морделла: для любой точки M внутри треугольника сумма расстояний от M до вершин по крайней мере вдвое больше суммы расстояний от M до сторон (опустите перпендикуляры MB, MD, MF на стороны и постройте параллелограммы BMFA, DMBC, FMDE; радиусы описанных окружностей треугольников BMF, DMB, FMD равны R_A, R_C, R_E в условии и равны расстояниям от точки M до вершин треугольника).

M706. Задача о равенстве хорд двух окружностей.

Задача из журнала «Квант» (1981 год, выпуск 10)

Условие:

Из центра каждой из двух данных окружностей проведены касательные к другой окружности. Докажите, что хорды, соединяющие точки пересечения касательных с окружностями (на рисунке 1 эти хорды показаны красным цветом), имеют одинаковые длины.

M706 - Рисунок 1

Доказательство:

Из подобия соответствующих треугольников (см. рисунок 2) легко находим,что каждая хорда имеет длину $ \frac{2Rr}{O_{1}O_{2}}$.

m706 Рисунок 2

Источники:

  1. Условие задачи
  2. Решение задачи

О подобии черных и белых точек в квадрате и круге

Задача из журнала «Квант» (2003)

Условие

Можно ли раскрасить все точки квадрата и круга в черный и белый цвета так, чтобы множества белых точек этих фигур были подобны друг другу и множества черных точек были подобны друг другу (возможно, с разными коэффициентами подобия)?

Ответ: можно

Иллюстрации к заданию

Решение

Рассмотрим такую раскраску квадрат (рис.1). Впишем круг в квадрат и раскрасим в черный цвет точки квадрата, лежащие вне круга. Впишем в полученный круг квадрат со сторонами, паралельными сторонам исходного квадрата. Раскрасим в белый цвет точки круга, лежащие вне «маленького» квадрата. По такому же правилу раскпасим маленький квадрат и т.д. Заметим, что мы считаем граничные точки лежащими «внутри» фигуры. Таким образом, граница каждого квадрата покрашена черным, за исключением четырех точек качания вписанного в квадрат круга, а граница каждого круга — белым, за исключением четырех вершин квадрата, вписанного в этот круг. Пусть сторона исходного квадрата равна a(рис.2), тогда сторона маленького квадрата равна $\frac{a}{\sqrt{2}}$. Следовательно, длины сторон квадратов стремятся к 0. Поэтому все точки, кроме центра будут раскрашены. Центр раскрасим в черный цвет.

Очевидно, что множество черных точек квадрата подобно множеству черных точек круга, вписанного в этот квадрат (второе получается из первого гомотетией с центром в центре квадрата и с коэффициентом $\frac{a}{\sqrt{2}}$). А множество белых точек квадрата совпадает с множеством белых точку вписанного в него круга.

 

Г.Гальперин

М685. О конгруэнтных подмножествах

Два подмножества множества натуральных чисел назовем конгруэнтными, если одно получается из другого сдвигом на целое число. (Например, множества четных и нечетных чисел конгруэнтны.) Можно ли разбить множество натуральных чисел на бесконечное число (непересекающихся) бесконечных конгруэнтных подмножеств?

Ответ

Предположим, что задача уже решена. Пусть $A$ — то из множеств разбиения, которое содержит единицу. Остальные множествa разбиения получаются из $A$ сдвигами на некоторые натуральные числа, множество которых, дополненное нулем, мы обозначим через $B$. Пусть для каждого $b\in B$ множество $A_{b}$ — результат сдвига множества $A$ на $b,$ то есть множество всех чисел вида $a+b,$ где $a\in A$. По условию, если $b_{1}\neq b_{2},$ то $A_{b_{1}}\cap A_{b_{2}}=\oslash$ и всякое натуральное число $n$ принадлежит одному из множеств $A_{b},$ то есть каждое натуральное число единственным образом представляется в виде суммы $n=a+b$.

Построение множеств $A$ и $B$ мы осуществим двумя способами.

Первый способ. Пусть множества $A$ и $B$. обладающие свойством $n=a+b$ построены. Поставим в соответствие каждому натуральному числу $n=a+b$ точку плоскости $Oxy$ с координатами $\left ( a;b \right )$.

    Пусть $M$ — множество всех полученных точек плоскости. Множество $M,$ очевидно, обладает следующими свойствами:

  1. если $A$ — проекция множества $M$ на ось $Ox,$ а $B$ — проекция $M$ на ось $O,y$ то множество $M$ совпадает со всем множеством пар $\left ( a;b \right )$.
  2. пересечение множества $M$ с каждой прямой $x+y=n$ состоит из единственной точки: в частности, при $n=1$ — это точка $\left ( 1;0 \right )$.

Ясно, что, построив хотя бы одно множество $M$ обладающее свойствами 1) и 2), мы получим нужное разбиение множества натуральных чисел.

Множество $M$ построим как объединение множеств $M_{0}\subset M_{1}\subset M_{2}\subset …\subset M_{n}\subset \ldots,$ которые, в свою очередь, будем строить так:

Пусть $M_{0}=\left \{ \left ( 1;0 \right ) \right \}$. Назовем $n$-ой диагональю прямую $x+y=n$. Точка $\left ( 1;0 \right )$ попадает на первую диагональ: вычеркнем ее и в дальнейшем, строя множества $M_{1}$ будем последовательно вычеркивать диагонали, на которые попадают построенные точки.

Сдвинем множество $M_{0}$ на единицу вправо и положим $M_{1} = \left \{ \left ( 1;0 \right ), \left ( 2;0 \right ) \right \}$ при этом вычеркнем вторую диагональ(Рис.1). Затем сдвинем множество $M_{1}$ на две единицы вверх и присоединим полученные точки к $M_{1}$: это будет множество $M_{2}$: при этом вычеркнем третью и четвертую диагонали.

144
144

Множество $M_{2}$ сдвинем на четыре единицы вправо — так, чтобы вычеркнуть следующие четыре диагонали: получим множество $M_{3}$

144
144

Вообще. множество $M_{k+1}$ строим так: сдвигаем множество $M_{k}$ на $2^{k}$ единиц вправо или вверх — так, чтобы вычеркнуть диагонали с номерами $2^{k} + 1, 2^{k} + 2, 2^{k+1}$.

Легко видеть, что объединение множеств $M_{0}, M_{1},\ldots M_{n}\ldots$ обладает свойствами 1) и 2).

Второй способ. Как известно всякое натуральное число $n$ представляется в виде $$n=a_{0}\cdot 2^{k}+a_{1}\cdot 2^{k-1}+\ldots+a_{k-1}\cdot 2+a_{k},$$ где $a_{i}$ равно 0 или 1. причем такое представление единственно. На этом основана двоичная запись числа $n$: $n_{2} = \overline{a_{0}a_{1}\ldots a_{k-1}a_{k}}$

Рассмотрим теперь два множества натуральных чисел: множество $A,$ состоящее из чисел, в двоичной записи которых единица находится в нечетных разрядах, и множество $B$ состоящее из 0 и чисел, в двоичной записи которых единица находится в четных разрядах.

Очевидно, любое натуральное $n$ единственным образом представляется в виде суммы $n=a+b$.

Множества $A$ и $B$ обладают свойством $n=a+b$. и поэтому множества $A_{b}$ дают нужное разбиение.

М416. О максимальном количестве ребер в таком графе, что никакие три ребра не создают треугольник

Задача из журнала «Квант»(1977 №8)

Условие

На плоскости даны $n$ точек $A_{1},\ldots,A_{n}$, никакие три из которых не лежат на одной прямой. Какое наибольшее число отрезков с концами в этих точках можно провести так, чтобы не получилось ни одного треугольника с вершинами в этих точках?

Решение

Проведем максимальное число отрезков с концами в точках $A_{1},\ldots,A_{n}$. Получим некоторый граф с вершинами в этих точках. Отрезки с концами в вершинах графа будем называть ребрами графа. Оценим число ребер в нашем графе.

Назовем степенью вершины в графе число выходящих из неё ребер. Пусть $k$ — максимальная степень вершины в графе, и пусть некоторая вершина $A_{i}$ соединена с $k$ вершинами $A_{j_{1}},\ldots,A_{j_{k}}$ графа (рисунок 1).

kvant1

Тогда степень любой вершины из множества $\left \{ A_{j_{1}},\ldots,A_{j_{k}} \right \}$ не превосходит $n-k$ ($n$ — число вершин графа), поскольку любые вершины из этого множества уже не могут быть соединены ребром (в нашем графе никакие три ребра не образуют треугольника — с вершинами в вершинах графа). Так как $k$ — максимальная степень вершины в графе, степень каждой из оставшихся $n-k$ вершин не превосходит $k$. Поэтому сумма степеней всех вершин графа не превосходит $$k \left(n-k \right )+ \left (n-k \right) k=2k \left (n-k\right).$$ Но легко видеть, что сумма степеней всех вершин графа равна удвоенному количеству его ребер. Следовательно, количеств ребер графа не больше $$k\left(n-k\right)\leqslant\left(\frac{k+(n-k)}{2}\right)^{2}=\frac{n^{2}}{4}.$$ Чтобы получить данное соотношение, мы воспользовались теоремами о среднем арифметическом и среднем геометрическом. Учитывая, что количество ребер графа — число целое, мы получаем, что ребер в нашем графе не больше чем $\left [ \frac{n^{2}}{4}\right]$ (здесь $\left [ x \right]$ означает целую часть числа $x$ — наибольшее целое число, не превосходящее $x$).

Укажем теперь способ построения графа без треугольников с $n$ вершинами, число ребер которого в точности равно $\left [ \frac{n^{2}}{4}\right]$.

Разобьем множество точек $A_{1},\ldots,A_{n}$ на два: $\left [ \frac{n}{2} \right ]$ точек в одном множестве и $n — \left [ \frac{n}{2} \right ]$ — в другом. Соединив все точки точки первого множества с точками второго (как на рисунке 2, где $n=5$), мы получим граф, у которого не будет ни одного треугольника с вершинами в точках $A_{1},\ldots,A_{n}$.

kvant2

Число ребер в этом графе, очевидно, равно $\left [ \frac{n}{2} \right ]\left(n-\left [ \frac{n}{2} \right ]\right)$. Если $n$ — четное, то $$\left [ \frac{n}{2} \right ]\left (n-\left [ \frac{n}{2} \right ]\right)=\frac{n^{2}}{4}=\left [ \frac{n^{2}}{4} \right ].$$Если $n$ — нечетное, то $\left [ \frac{n}{2} \right ]\left(n-\left [ \frac{n}{2} \right ]\right)=$ $\frac{n-1}{2}\left(n-\frac{n-1}{2}\right)=$ $\frac{n^{2}-1}{4}=$ $\left [ \frac{n^{2}}{4}\right].$ Что и требовалось доказать.

Итак, ответ в задаче: максимальное число отрезков равно $\left [ \frac{n^{2}}{4}\right]$(этот результат в теории графов называют теоремой Турана).