16.1 Равномерная сходимость

Определение. Пусть на множестве $E$ задана последовательность функций $f_{n}\left(n=1,2…\right)$, сходящаяся на $E$ поточечно к функции $f$. Говорят, что последовательность {$f_{n}$} сходится равномерно к функции $f$ на множестве $E$, если для любого $\varepsilon > 0$ найдется такой номер $N$, зависящий только от $\varepsilon$ (и не зависящий от $x$), что для каждого $n \geq N$ справедливо неравенство $\mid f_{n}\left(x\right)- f\left(x\right)\mid < \varepsilon$.

Определение поточечной сходимости на множестве $E$ в кванторах можно записать следующим образом:
$$ \forall x \in E \; \forall\varepsilon > 0 \; \exists N = N\left(\varepsilon,x\right) : \forall n \geq N \mid f_{n}\left(x\right)- f\left(x\right)\mid < \varepsilon, $$ а равномерной сходимости — так: $$ \forall \varepsilon > 0 \; \exists N = N\left(\varepsilon\right) : \forall n \geq N \; \forall x \in E \mid f_{n}\left(x\right)- f\left(x\right)\mid < \varepsilon.$$ В определении поточечной сходимости номер $N$ зависит, вообще говоря, от $\varepsilon$ и от $x$, а в определении равномерной сходимости $N$ зависит только от $\varepsilon$ и не зависит от $x$. Иначе говоря, поточечная сходимость будет равномерной, если для заданного $\varepsilon > 0 $ номер $N$ можно подобрать так, чтобы он был пригоден сразу для всех $x \in E$.

Теперь видно, что свойство равномерной сходимости не слабее, чем свойство поточечной сходимости, т. е. из равномерной сходимости следует поточечная сходимость. Обратное неверно. Может оказаться, что для каждого $\varepsilon > 0$ и для $x \in E$ найдется номер $N = N \left(\varepsilon,x\right)$, но для всех сразу $x \in E$ номер $N$, не зависящий от $x$, может и не существовать. Приведем

Пример 1. Пусть $f_{n}(x) = x^{n} (x \in E \equiv \left[0,1\right])$. Мы уже видели, что $$f(x) = \lim_{n\to\infty} f_{n}(x) = \begin{cases}0, & 0\leq x < 1, \\1, & x = 1.\end{cases}$$ Если бы последовательность {$x^{n}$} сходилась к функции $f$ равномерно, то неравенство $\mid x^{n} — f(x)\mid < \varepsilon$ при достаточно больших $n \; (n\geq N(\varepsilon))$ должно было быть выполненным сразу для всех $x \in E$. Но это не так, поскольку при фиксированном $n$ имеем $\lim_{x\to1-0} x^{n} = 1 $, так что в любой левой полуокрестности точки $x_{0}=1$ найдется такая точка $x_{1} \frac{1}{2}$. Поэтому если мы возьмем $\varepsilon_{0} > \frac{1}{2}$, то получим неравенство $\mid x_1^n — 0\mid\geq \varepsilon_{0} $. Окончательно имеем $$\exists \varepsilon_{0} (\varepsilon_{0} = \frac{1}{2}) : \forall N \; \exists n \geq N (n = N) \; \exists x_{1} =$$ $$= x_{1}(\varepsilon, n) \in E : \mid f_{n}(x_{1}) — f(x_{1})\mid \geq \varepsilon_{0}$$ Это означает, что данная последовательность не является равномерно сходящейся на множестве $E$.

В этом примере «плохие» точки $x_{1}$, т.е. такие, в которых выполнено неравенство $\mid f_{n}(x_{1}) — f(x_{1})\mid \geq \varepsilon_{0}$, находится вблизи точки $x_{0}=1$. Если же мы отделимся от $x_{0}$, т.е. рассмотрим последовательность ${x^{n}}$ на множестве $E_{\delta}=\left[0,1 — \delta\right]$, где $\delta > 0$ — произвольное число, то сходимость данной последовательности к функции $f(x)\equiv0$ на множестве $E_{\delta}$ уже будет равномерной. Действительно, в этом случае $$\mid f_{n}(x) — f(x) \mid = x^{n} \leq (1 — \delta)^{n} < \varepsilon \; \; \; (0\leq x \leq 1-\delta), $$ если только $n \geq N(\varepsilon), $ где $N(\varepsilon) = \left[\frac{\ln \varepsilon}{\ln (1-\delta)}\right] + 1 $ не зависит от $x \in E_{\delta}$.

Пример 2. Для последовательности функций $f_{n}(x) = \frac{nx}{1+n^{2}x^{2}} \; \; (x \in E\equiv \mathbb{R})$ ранее мы показали, что $$f(x) = \lim_{x\to\infty} \frac{nx}{1+n^{2}x^{2}} = 0 \; \; \; (x \in \mathbb{R}).$$ Поэтому $\mid f_{n}(x) — f(x)\mid \rightarrow 0 \; \; \; (n \rightarrow \infty )$ при каждом фиксированном $x \in \mathbb{R}$. Однако при фиксированном $n$ наибольшее значение функция $f_{n}(x) = \frac{nx}{1+n^{2}x^{2}}$ достигает в точке $x_{n} = \frac{1}{n}$ и это значение равно $f_{n}(\frac{1}{n}) = \frac{1}{2}$. Таким образом, для $\varepsilon_{0}=\frac{1}{2}$ неравенство $\mid f_{n}(x)-f(x)\mid < \varepsilon_{0}$ не может быть выполненным сразу для всех $x \in \mathbb{R}$. Значит, последовательность {$f_{n}$} сходится к функции $f \equiv 0$ на $\mathbb{R}$, но неравномерно, т.е. $$\exists \varepsilon_{0} ( \varepsilon_{0} = \frac{1}{2}) : \forall N \; \exists n\geq N (n=N) \;
\exists x_{1} (x_{1} = \frac{1}{n}) : \mid f_{n}(x_{1}) — f(x_{1})\mid \geq \varepsilon_{0}.$$

Если же зафиксировать число $\delta > 0 $, то нетрудно показать, что на множестве $E_{\delta} = \left[\delta,+\infty\right)$ последовательность функций $f_{n}(x) = \frac{nx}{1+n^{2}x^{2}}$ сходится равномерно. Действительно, неравенство $$\mid f_{n}(x) — f(x)\mid = \frac{nx}{1+n^{2}x^{2}} \leq \frac{1}{nx} \leq \frac{1}{n\delta} < \varepsilon \; \; \; (x \in E_{\delta})$$ выполнено, если только $n \geq N(\varepsilon)$, где $ N(\varepsilon) = \left[\frac{1}{\varepsilon\delta}\right] + 1 $ не зависит от $x \in E_{\delta}$

Геометрический смысл равномерной сходимости состоит в том, что начиная с номера $N$ графики функций $f_{n}(x)$ расположены в $\varepsilon$-полосе графика функции $f$.

Равномерная сходимость ряда определяется как равномерная сходимость последовательности его частичных сумм.

Определение. Пусть на множестве $E$ задана последовательность функций $\left\{u_{n}\right\}$. Ряд $\sum_\left(n=1\right)^\infty u_{n}$ называется равномерно сходящимся на множестве $E$, если он сходится поточечно на $E$ и последовательность его частичных сумм равномерно сходится к сумме ряда на множестве $E$.

Другими словами, определение равномерной сходимости ряда $\sum_\left(n=1\right)^\infty u_{n}$, сходящегося к функции $f$ на множестве $E$, можно сформулировать следующим образом. Обозначим через $S_{n}(x) = \sum_\left(k=1\right)^n u_{k}(x)$ частичные суммы ряда $ \sum_\left(n=1\right)^\infty u_{n}(x), r_{n}(x) = \sum_\left(k = n+1\right)^\infty u_{k}(x)$ — остаток после $n$-го слагаемого. Тогда $S_{n}(x) + r_{n}(x) = f(x),$ а равномерная сходимость ряда означает, что для любого $\varepsilon > 0$ найдется такой номер $N$ (зависящий только от $\varepsilon$), что для всех $n \geq N$ и для всех $x \in E$ справедливо неравенство $\mid S_{n}(x) — f(x)\mid < \varepsilon$. Но так как $\mid S_{n}(x) — f(x)\mid = \mid r_n(x)\mid$, то получаем $$\forall \varepsilon > 0 \; \exists N : \forall n \geq N \; \forall x \in E \;\; \mid r_{n}(x)\mid < \varepsilon. $$ Это в свою очередь означает, что остаток ряда равномерно стремится к нулю. Таким образом, получили следующее эквивалентное определение равномерной сходимости ряда.

Ряд $\sum_\left(n=1\right)^\infty u_{n}(x)$ называется равномерно сходящимся на множестве $E$, если последовательность его остатков после $n$-го слагаемого {$r_{n}$} равномерно сходится к нулю на множестве $E$.

Это определение более выгодно по сравнению с предыдущим тем, что оно использует лишь слагаемые исходного ряда и не использует сумму самого ряда $f(x)=\sum_\left(n=1\right)^\infty u_{n}(x)$.

Пример 1. Ряд $\sum_\left(n=1\right)^\infty x^{n}$ сходится на интервале $(-1,1)$ т.к. он представляет собой сумму геометрической прогрессии со знаменателем $x, \mid x \mid < 1 $. Исследуем его на равномерную сходимость. Для этого рассмотрим остаток $r_{n}(x) = \sum_\left(k =n+1\right)^\infty x^{k} = \frac{x^{n+1}}{1-x}$. При фиксированном $x$ и $n \rightarrow \infty$ имеем $r_{n}(x) \rightarrow 0$. Это означает, что данный ряд сходится при каждом $x$, т.е. поточечно. Если же зафиксировать $n$ к $1-0$, то получим, что $\frac{x^{n+1}}{1-x} \rightarrow +\infty$, т.е. если $x$ близок к $1$, то $r_{n}(x)$ принимает большие значения. Это означает, что неравенство $\mid r_{n}(x)\!\!\mid \; = \frac{\mid x\mid^{n+1}}{1-x} < \varepsilon$ сразу для все $x \in (-1,1)$, но неравномерно.

С другой стороны, на любом отрезке $\left[-q,q\right]$, где $0<q<1$, ряд $\sum_\left(n=1\right)^\infty x^{n}$ сходится равномерно. Действительно, в этом случае $$\mid r_{n}(x)\!\!\mid = \; \mid\sum_\left(k=n+1\right)^\infty x^{n}\!\!\mid = \; \mid\frac{x^{n+1}}{1-x} \mid \; \leq \frac{q^{n+1}}{1-q}, \; \; \; (x \in \left[-q,q\right]).$$ Отсюда следует, что последовательность {$r_{n}(x)$} равномерно сходится к нулю на $[-q,q]$, т.е. данный ряд равномерно сходится на $[-q,q]$.

Пример 2. Рассмотрим ряд $\sum_\left(n=0\right)^\infty \frac{x^{2}}{(1+x^{2})^{n}}$. Имеем $$r_{n}(x) = \begin{cases}\frac{x^{2}}{(1+x^{2})^{n}}, & x \neq 0\\0, & x = 0.\end{cases}$$ Если $x$ фиксировано, то $r_{n}(x) \rightarrow 0$ при $n \rightarrow \infty$. Это означает, что ряд является сходящимся при любом $x \in \mathbb{R}$, т.е. он сходится поточечно. Если зафиксируем $n$, то при стремлении $x$ к нулю получаем, что $r_{n}(x) \rightarrow 1$, а это означает, что неравенство $\mid r_{n}(x)\!\! \mid \; = \frac{1}{(1+x^{2})^{n}} < \varepsilon$ при $0 <\varepsilon< 1$ не может выполняться сразу для всех $x \in \mathbb{R}$, каким бы большим номер $n$ мы ни взяли. Таким образом, $r_{n}(x)\rightarrow 0 \; (n \rightarrow \infty)$, но неравномерно. Следовательно, данный ряд сходится на $\mathbb{R}$ неравномерно.

Замечание. Пусть задан ряд $$\sum_\left(n=1\right)^\infty u_{n}(x) \; \; \; (x \in E).\qquad
(16.2)$$ Рассмотри величины $$\mu_{n}=\sup_{x\in E} \mid \sum_\left(k=n+1\right)^\infty u_{k}(x)\mid = \sup_{x\in E} \mid r_{n}(x)\mid.$$ Тогда определение равномерной сходимости ряда (16.2) на множестве $E$ можно сформулировать следующим образом.

Ряд (16.2) сходится равномерно на множестве $E$, если $\lim_{n\to\infty} \mu_{n} = 0.$

Действительно, если $\mu_{n}\rightarrow 0 \; (n \rightarrow \infty)$, то для любого $\varepsilon > 0$ найдется такой номер $N$, что для всех $n \geq N$ справедливо неравенство $\mu_{n} < \varepsilon$, т.е. для всех $x \in E$ справедливо неравенство $\mid r_{n}(x)\mid < \varepsilon$, а значит ряд (16.2) сходится равномерно. Обратно, если $r_{n}(x)$ равномерно сходится к нулю, то для всех $x \in E$ справедливо неравенство $\mid r_{n}(x)\mid < \varepsilon$. Поэтому и $\mu_{n} = \sup_{x\in E} \mid r_{n}(x)\mid \leq \varepsilon$, т.е. $\mu_{n} \rightarrow 0$ при $n \rightarrow \infty$.

Пример 3. Исследовать на равномерную сходимость ряд $\sum_\left(n=1\right)^\infty \frac{(-1)^{n}}{x^{2}+n}$ на множестве $\mathbb{R}$

Данный ряд является рядом лейбницевского типа и поэтому, согласно теореме об оценке остатка ряда лейбницевского типа, $\mid r_{n}(x)\mid \leq \frac{1}{x^{2}+n+1}\leq \frac{1}{n+1}$. Таким образом, $\mu_{n}\leq \frac{1}{n+1} \rightarrow 0 \; \; (n\rightarrow \infty)$, и, следовательно, данный ряд сходится равномерно на $\mathbb{R}$.

Теорема(критерий Коши равномерной сходимости последовательности). Для того чтобы последовательность функций {$f_{n}$} равномерно сходилась на множестве $E$ к некоторой функции, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовал такой номер $N$, зависящий только от $\varepsilon$, что для любых $n,m \geq N$ и для любого $x \in E$ было выполнено неравенство $\mid f_n(x)-f_m(x)\mid < \varepsilon$.

Необходимость. Пусть последовательность {$f_n$} сходится к $f$ равномерно на $E$. Зададим $\varepsilon > 0 $. Тогда найдется такой номер $N$, что для все $n\geq N$ и для всех $x \in E$ справедливо неравенство $\mid f_n(x) — f(x)\mid < \frac{\varepsilon}{2}$. Если возьмем произвольные, $n,m \geq N$, то для любого $x \in E$ получим $$\mid f_n(x) — f_m(x)\mid \leq \mid f_n(x) — f(x)\mid + \mid f_m(x) — f(x)\mid < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$ т.е. выполнено условие теоремы (условие Коши).
Достаточность. Пусть выполнено условие Коши. Зафиксируем $x \in E$ и получим числовую последовательность {$f_n(x)$}, которая, согласно условию Коши, является фундаментальной и, следовательно, сходящейся. Обозначим ее предел через $f(x)$. Так как $x \ in E$ произвольное, то, проделав эту операцию для все $x \in E$, получим функцию $f(x)$. Покажем, что последовательность {$f_n(x)$} стремится к $f(x)$ равномерно на $E$. Зададим $\varepsilon > 0$. Тогда найдется такой номер $N$, что для всех $n,m\geq N$ и для любого $x \in E$ справедливо неравенство $\mid f_n(x)-f_m(x)\mid < \varepsilon$. Зафиксируем $n \geq N, x \in E$ и устремим $m\rightarrow \infty$. Тогда получим $\mid f_n(x)-f(x)\mid \leq \varepsilon.$ Это неравенство выполнено для любого $n \geq N$ и для всех $x \in E$, а это и означает, что последовательность {$f_n$} сходится к $f$ равномерно на $E$.

Доказанную теорему можно переформулировать для рядов следующим образом.

Теорема(критерий Коши равномерной сходимости ряда). Для того чтобы ряд $\sum_\left(n=1\right)^\infty u_n(x)$ равномерно сходился на множестве $E$, необходимо и достаточно, чтобы для любого $E > 0$ существовал такой номер $N$, зависящий только от $\varepsilon$, что для всех $n \geq N, p \in \mathbb{N}$ и для любого $x \in E$ выполнялось неравенство $\mid \sum_{k=n+1}^{n+p} u_k(x)\mid < \varepsilon$.

Эта теорема вытекает из предыдущей, если учесть, что равномерная сходимость ряда определяется как равномерная сходимость последовательности его частичных сумм.

Теорема (признак Вейерштрасса равномерной сходимости ряда). Пусть дан ряд $$ \sum_{n+1}^{\infty} u_n(x) \; \; \; (x \in E). \qquad (16.3)$$ Предположим, что существует числовая последовательность {$a_n$}, такая, что $\mid u_n(x)\mid \leq a_n \; \; \; (n=1,2…)$ для всех $x \in E$, и числовой ряд $\sum_{n=1}^\infty a_n$ сходится. Тогда ряд (16.3) сходится равномерно на $E$.

В силу условия теоремы, имеем $$\mid\sum_{k=n+1}^{n+p} u_k(x)\mid \leq \sum_{k=n+1}^{n+p} a_k \; \; \; (x \in E).$$ Так как ряд $\sum_{n=1}^\infty a_n$ сходится по условию, то, в силу критерия Коши для числовых рядов, для любого $\varepsilon > 0$ найдется такой номер $N$, что для всех $n \geq N$ и для любого $p \in \mathbb{N}$ справедливо неравенство $\sum_{k=n+1}^{n+p} a_k < \varepsilon$. Но тогда и неравенство $\mid\sum_{k=n+1}^{n+p} u_k(x) \mid < \varepsilon$ будет выполненным для всех $x \in E$, т.е. выполнено условие критерия Коши равномерной сходимости функционального ряда, в силу которого ряд (16.3) сходится равномерно на $E$.

Замечание 1. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда. В самом деле, рассмотренный выше пример 3 ряда $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2+n}$ показывает, что этот ряд хотя и сходится равномерно на $\mathbb{R}$, но оценить сверху его слагаемые можно лишь слагаемыми расходящегося числового ряда $\sum_{n=1}^{\infty} \frac{1}{n}$

Замечание 2. Признак Вейерштрасса дает достаточное условие не только равномерной, но и абсолютной сходимости ряда. Это сразу следует из неравенства $$\sum_{k=n+1}^{n+p} \mid u_k(x)\mid \leq \sum_{k=n+1}^{n+p} a_k \; \; \; (x \in E).$$

Замечание 3. Признак Вейерштрасса заключается в том, что из сходимости ряда $\sum_{n=1}^{\infty} a_n $, где $a_n = \sup_{x \in E}\mid u_n(x)\mid$, следует равномерная (и абсолютная) сходимость ряда $\sum_{n=1}^\infty u_{n}(x)$ на множестве $E$.

Пример 4. Рассмотрим ряд $\sum_{n=1}^\infty \frac{x}{1+n^4x^2}$ на $\mathbb{R}$. Используя очевидное неравенство $2\mid\!\! a\mid \leq 1 + a^2$, находим мажорантный числовой ряд $$\mid \frac{x}{1+n^4x^2}\mid \leq \frac{1}{n^2} \frac{\mid n^2x\mid}{1+(n^2x)^2} \leq \frac{1}{2}\frac{1}{n^2}.$$ Поскольку числовой ряд $\sum_{n=1}^\infty \frac{1}{2}\frac{1}{n^2}$ сходится, то исходный функциональный ряд сходится равномерно на $\mathbb{R}$.

Пример 5. Ряд $\sum_{n=1}^\infty \frac{\cos {nx}}{n^2}$ сходится равномерно на $\mathbb{R}$, поскольку $\mid \frac{\cos {nx}}{n^2}\mid \leq \frac{1}{n^2}$ и числовой ряд $\sum_{n=1}^\infty \frac{1}{n^2}$ сходится.

Теорема(признак Абеля равномерной сходимости) Пусть на множестве $E$ заданы две функциональные последовательности {$a_n(x)$} и {$b_n(x)$}, такие, что при каждом $x \in E$ числовая последовательность {$a_n(x)$} монотонна, функции $a_n(x)$ ограничены в совокупности, т.е. существует такое $M$, что $\mid a_n(x)\mid \leq M \;\;\; (x \in E, n = 1,2,…)$, а ряд $\sum_{n=1}^\infty b_n(x)$ сходится равномерно на $E$. Тогда ряд $\sum_{n=1}^\infty a_n(x) b_n(x)$ сходится равномерно на $E$.

Теорема(признак Дирихле равномерной сходимости). Пусть на множестве $E$ заданы две последовательности функций {$a_n(x)$} и {$b_n(x)$}, такие, что при каждом $x \in E$ числовая последовательность {$a_n(x)$} монотонна, функциональная последовательность {$a_n(x)$} равномерно сходится к нулю на $E$, а частичные суммы ряда $\sum_{n=1}^\infty b_n(x)$ ограничены в совокупности на $E$, т.е. существует такое число $M$, что $\mid\sum_{k=1}^n b_k(x)\mid \leq M (x \in E, n = 1,2,…)$. Тогда ряд $\sum_{n=1}^\infty a_n(x) b_n(x)$ сходится равномерно на $E$.

Доказательства признаков Абеля и Дирихле легко провести, основываясь на критерии Коши и применяя преобразование Абеля(точно так же, как это было сделано при доказательстве признаков Абеля и Дирихле сходимости числовых рядов). Рекомендуется провести эти доказательства самостоятельно.

Пример 6. Рассмотрим ряды вида $\sum_{n=1}^\infty a_n(x) \cos nx $ и $\sum_{n=1}^\infty a_n(x) \sin nx$, где последовательность чисел $a_n$ монотонно стремится к нулю. К ряду $\sum_{n=1}^\infty a_n(x) \cos nx $ применим признак Дирихле. Для этого рассмотрим суммы $S_n(x)=\sum_{k=1}^n \cos kx$. Имеем $$2\sin \frac{x}{2} S_n(x) =\sum_{k=1}^n 2\sin \frac{x}{2} \cos kx=$$ $$=\sin \frac{3x}{2} — \sin \frac{x}{2} + \sin \frac{5x}{2} — \sin \frac{3x}{2} + … + \sin (n+ \frac{1}{2})x — \sin (n — \frac{1}{2})x =$$ $$= \sin (n+ \frac{1}{2})x — \sin \frac{x}{2}.$$ Поэтому $$S_n(x) = \frac{\sin (n + \frac{1}{2})x}{2\sin \frac{x}{2}} — \frac{1}{2} \;\;\; (0 < x <2\pi), \;\;\;\; \mid S_n(x)\mid \leq \frac{1}{2} + \frac{1}{2\mid \sin \frac{x}{2}\mid}.$$ Если $x \rightarrow 0$, то $S_n(x) \rightarrow n$, так что в окрестности нуля нарушается равномерная ограниченность сумм $S_n(x)$. Если же $\delta \leq x \leq 2\pi — \delta$, где $0 < \delta < \pi$, то $\mid S_n(x)\mid \leq \frac{1}{2} + \frac{1}{2 \sin \frac{\delta}{2}}$ и поэтому $\left[ \delta, 2\pi — \delta\right]$ выполнены все условия признака Дирихле, в силу которого ряд $\sum_{n=1}^\infty a_n \cos {nx}$ сходится равномерно на $\left[ \delta, 2\pi — \delta\right]$. На всем интервале $(0,2\pi)$ признак Дирихле неприменим, но это еще не означает, что ряд сходится неравномерно, поскольку признак Дирихле — лишь достаточное условие равномерной сходимости ряда.

Покажите самостоятельно, что ряд $\sum_{n=1}^\infty a_n \sin {nx}$, где последовательность {$a_n$} монотонно убывает к нулю, сходится равномерно на $\left[ \delta, 2\pi — \delta\right]$, где произвольное $0 < \delta < \pi$. Для этого полезно использовать равенство $$ \sum_{k=1}^n \sin kx = \frac{1}{2 \sin \frac{x}{2}} \sum_{k=1}^n 2 \sin \frac{x}{2} \sin kx = $$ $$ = \frac{1}{2 \sin \frac{x}{2}} \sum_{k=1}^n [\cos (k — \frac{1}{2})x — \cos (k + \frac{1}{2})x] = $$ $$ =\frac{1}{2 \sin \frac{x}{2}} [\cos \frac{x}{2} — \cos(n+\frac{1}{2})x] \;\;\; (0 < x < 2\pi)$$ и применить признак Дирихле.

Примеры решений задач

  1. Исследовать на равномерную сходимость на интервале $(-\infty, +\infty)$ ряд $\sum_{n=1}^{\infty} \frac{nx}{1+n^5x^2}$.
Решение

Удобно применить признак Вейерштрасса, так как несложно подобрать мажоранту для ряда. Найдем максимум общего члена ряда: $$\frac{\text{d}}{\text{d}x}(\frac{nx}{1+n^5x^2})= n\frac{1-x^2n^5}{(1+x^2n^5)^2} = 0 \Rightarrow x_0 = \frac{1}{n^{\frac{5}{2}}}.$$ Следовательно, $$\mid\frac{nx}{1+n^5x^2}\mid \leq \frac{1}{2n^{\frac{3}{2}}}.$$ Мажорирующий ряд $\sum_{n=1}^\infty \frac{1}{2n^{\frac{3}{2}}}$ сходится. Поэтому исходный ряд сходится равномерно.

[свернуть]

Исследовать на равномерную сходимость на отрезке  $[0,2\pi]$ ряд $\sum_{n=1}^{+\infty} = \frac{\sin nx}{n}$ .

Решение

На данном отрезке частичные суммы вспомогательного ряда не будут ограничены. Применим критерий Коши. Выберем $m=2n, x_0 = \frac{1}{n}$, тогда $$ \mid \frac{\sin \frac{n+1}{n}}{n+1} + … + \frac{\sin 2}{2n}\mid \geq \frac{\sin 1}{n+1} + … + \frac{\sin 1}{2n} \geq \frac{1}{2}\sin 1 = \varepsilon_0.$$ Для ряда выполнился критерий Коши, следовательно, ряд не сходится равномерно.

[свернуть]

Равномерная сходимость

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Список литературы


Тер-Крикоров А.М., Шабунин М.И. Курс Математического Анализа. 1997; с исправлениями 2001. ФИЗМАТЛИТ, 2001, стр.  384 — 407.

В.И.Коляда, А.А.Кореновский. Курс лекций по математическому анализу Т.2. Одесса, «Астропринт», 2010, стр. 32-41.

Г. М. Фихтенгольц «Курс дифференциального и интегрального исчисления» ФИЗМАТЛИТ, 1964 т.2, стр. 376-386.

15. Числовые ряды

12.8.1 Квадратичные формы

Определение. Квадратичной формой на $\mathbb{R}^{n}$ называется каждая функция вида
$$Q\left(h\right) = \sum_{i,j=1}^{n} a_{ij}h^{i}h^{j}, $$
где $a_{ij}$ — действительные числа. Матрица $\left(a_{ij}\right)$ называется матрицей квадратичной формы.

Будем считать, что $a_{ij}=a_{ji},$ т. е. что матрица $\left(a_{ij}\right)$ симметрична. Заметим, что $Q$ — это многочлен второго порядка от $n$ переменных $h_{1},\cdots ,h_{n}.$ Ясно, что для любого действительного числа $t$
$$Q\left(th\right) = t^{2}Q\left(h\right). $$

Это свойство называется свойством однородности второго порядка.

Определение Квадратичная форма $Q$ называется положительно определенной, если для любого $h \neq 0$ справедливо неравенство $Q\left(h\right) \gt 0.$

Аналогично, если для любого $h \neq 0$ имеем $Q\left(h\right)\lt 0,$ то такая квадратичная форма называется отрицательно определенной.

Если квадратичная форма принимает как положительные, так и отрицательные значения, то такая квадратичная форма называется неопределенной.

Если $Q\left(h\right)\geqslant 0$ для всех $h,$ то форма называется положительно полуопределенной, а если $Q\left(h\right)\leqslant 0$ для всех $h,$ то форма называется отрицательно полуопределенной.

Квадратичная форма называется знакоопределенной, если она положительно определенная или отрицательно определенная.

Пример 1. Если $Q\left(x^{1},x^{2}\right) = (x^{1})^{2} + 2(x^{2})^{2},$ то для всех $x^{1},x^{2}$ кроме $x^{1}=x^{2}=0$, имеем $Q\left(x^{1},x^{2}\right) \gt 0,$ т.е. эта форма положительно определенная.
Пример 2. Если $Q\left(x^{1},x^{2}\right) = (x^{1})^{2} — x^{1}x^{2} — (x^{2})^{2}$ имеем $Q(1,0)=1, Q(0,1)= -1, $ так что эта форма неопределенная.
Пример 3. Если $Q\left(x^{1},x^{2}\right) = (x^{1})^{2} — 2x^{1}x^{2} + (x^{2})^{2}$ положительно полуопределенная, поскольку для любых $x^{1},x^{2}$ имеем $Q\left(x^{1},x^{2}\right) \geqslant 0,$ но равенство $Q\left(x^{1},x^{2}\right) = 0$ имеет место не только в точке $x^{1}=x^{2}=0,$ а в каждой точке вида $x^{1}=x^{2}$.
Пример 4. Форма $Q\left(h\right) = (h^{1})^{2} + \cdots + (h^{n})^{2} = |h|^{2},$ очевидно, положительно определенная.
Пример 5. Пусть $Q\left(h\right) = (h^{1})^{2} + \cdots + (h^{m})^{2},$ где $m \lt n$. Эта форма положительно полуопределенная, поскольку $Q(h) \geqslant 0 $, но при $i\gt m$ значений этой формы на стандартном векторе $e_{i}$ равно нулю.
Пример 6. Пусть $Q\left(h\right) = (h^{1})^{2} + \cdots + (h^{m})^{2} — (h^{m+1})^{2} — \cdots — (h^{n})^{2},$ где $m \lt n$. Тогда эта форма неопределенная, поскольку $Q(e_{i})=1$ при $i\leqslant m$ и $Q(e_{i})=-1,$ если $i\gt m.$

Для любой квадратичной формы $Q$ $$|Q(h)| \leqslant \sum_{i,j=1}^{n} |a_{i j}| |h^{i}| |h^{j}| \leqslant | h^{2} | \sum_{i,j=1}^{n} |a_{i j}| \equiv K | h^{2} |.$$

Эта оценка показывает, что при $h \rightarrow 0$ квадратичная форма стремится к нулю. Если квадратичная форма знакоопределенная, то полученный порядок стремления к нулю оказывается точным. Именно, справедлива

Лемма 1. Пусть $Q$ — положительно определенная квадратичная форма на $\mathbb{R}^{n}$. Тогда существует такое положительное число $\lambda ,$ что $$Q(h) \geqslant \lambda |h|^{2} (h \subset \mathbb{R}^{n}). $$
Обозначим через $S$ единичную сферу в $\mathbb{R}^{n},$ т.е. $$ S=\left\{x \in \mathbb{R}^{n} : |x|=1\right\}.$$Легко видеть, что $S$ — замкнутое и ограниченное множество и, следовательно, компактное. Поэтому, по второй теореме Вейерштрасса, непрерывная функция $Q$ достигает своего наименьшего значения, которое мы обозначим через $\lambda.$ Но на $S$ форма $Q$ принимает положительные значения, так что $\lambda \gt 0.$
Итак, $Q(x)\geqslant \lambda (|x|=1).$ Если теперь $h$ — произвольный вектор из $\mathbb{R}^{n},$ то положим $ x = \frac{h}{|h|}.$ Тогда $|x|=1,$ т.е. $x$ лежит на единичной сфере, а поэтому $Q(x)\geqslant \lambda .$ Если вместо $x$ подставим его значение, то получим $Q(\frac{h}{|h|})\geqslant \lambda .$ Воспользовавшись свойством однородности второго порядка для формы $Q$, имеем $Q(h)\geqslant \lambda|h|^{2}.$

Теперь займемся таким вопросом. Как по матрице коэффициентов квадратичной формы судить о знакоопределенности формы? Рассмотрим подробно случай $n=2.$

Пусть $Q(h,k)=a_{11}h^{2}+2a_{12}hk+a_{22}k^{2}.$ Предположим сначала, что $a_{11}\neq 0.$ Тогда $$Q(h,k)=\frac{1}{a_{11}}(a_{11}^{2} h^{2}+2a_{11}a_{12}hk+a_{11}a_{22}k^{2}) = \frac{1}{a_{11}}\left[(a_{11}h+a_{12}k)^{2}+\triangle k^{2} \right],$$ где
$$\triangle = a_{11}a_{22}-a_{12}^{2} = \begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{vmatrix}.$$

  1. Если $\triangle \gt 0,$ то выражение в квадратных скобках положительно для любых $h$ и $k,$ не равных одновременно нулю, т.е. $Q(h,k)\neq 0,$ причём $sign (Q(h,k)) = sign (a_{11}).$ В этом случае форма является знакоопределенной, она сохраняет свой знак.
  2. Рассмотрим случай $\triangle \lt 0.$ Пусть, например, $k\neq 0.$ Тогда вынося за скобки $k^{2}$ и обозначая $t=\frac{h}{k},$ получаем $$ Q(h,k) = k^{2}\left[a_{11}t^{2}+2a_{12}t+a_{22} \right].$$ Если $a_{11}\neq 0,$ то в скобках имеем квадратный трёхчлен относительно $t.$ Его дискриминант $-4\triangle \gt 0.$ Поэтому этот квадратный трёхчлен имеет различные действительные корни, а значит принимает, как и положительные, так и отрицательные значения.

    Если же $a_{11}=0,$ то $a_{12}\neq 0$(так как иначе бы получили, что $\triangle = 0$). Значит, в квадратных скобках линейный двучлен $2a_{12}t+a_{22},$ который также принимает как положительные, так и отрицательные значения.

    Итак, если $\triangle \lt 0,$ то квадратичная форма $Q$ является неопределенной.

  3. Пусть $\triangle = 0.$ Если $a_{11}\neq 0,$ то получим $$Q(h,k) = \frac{1}{a_{11}}(a_{11}h+a_{12}k)^{2}.$$ Если, например, $a_{11} \gt 0,$ то всегда $Q(h,k) \geqslant 0,$ а при $h = -\frac{a_{12}k}{a_{11}}$ имеем $Q(h,k)=0.$ Это означает, что существуют ненулевые векторы, на которых форма обращается в нуль, и получаем, что форма полуопределена.

    Если же $a_{11}=0,$ то в этом случае $\triangle = -a_{12}^{2}.$ Значит $a_{12}=0$ и $Q(h,k) = a_{22}k^{2}.$ Это — тоже полуопределенная форма.

Итак, если $\triangle = 0,$ то форма полуопределенная.

Окончательно приходим к следующему выводу.

Лемма 2. Пусть

$Q(h,k)=a_{11}h^{2}+2a_{12}hk+a_{22}k^{2}.$ и $\triangle = a_{11}a_{22}-a_{12}^{2} $

Тогда:

1) если $\triangle \gt 0$, то форма $Q$ — знакоопределенная, причём $sign (Q) = sign (a_{11});$

2) если $\triangle \lt 0 ,$ то $Q$ — неопределенная форма.

2) если $\triangle = 0 ,$ то $Q$ — полуопределенная форма.

Определение. Пусть $Q(h)=\sum_{i,j=1}^{n}a_{ij}h^{i}h^{j}$ — квадратичная форма на $\mathbb{R}^{n}$ с симметричной матрицей $$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$

Миноры этой матрицы, расположенные в её левом верхнем углу, называют главными минорами, т.е. главные миноры — это $$
\triangle_{1} = a_{11}, \triangle_{2} = \begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{vmatrix}, \cdots , \triangle_{n} =\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \ \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}.
$$

Критерий Сильвестра. Для того, чтобы квадратичная форма $Q$ была положительно определенной, необходимо и достаточно, чтобы все её главные миноры были положительными.

Критерий отрицательной определенности. Для того, чтобы квадратичная форма $Q$ была отрицательно определенной, необходимо и достаточно, чтобы были выполнены следующие условия: $-\triangle_{1} \gt 0,\triangle_{2} \gt 0,\cdots ,(-1)^{n}\triangle_{n} \gt 0,$ т.е. главные миноры должны иметь чередующиеся знаки, причём первый должен быть отрицательным.

Эти два критерия здесь мы доказывать не будем.

Примеры решения задач

  1. Найти матрицу квадратичной формы $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} — 4x_{1}x_{2} + x_{2}^{2} + 2x_{1}x_{3} — x_{3}^{2}$$
    Решение
    1. Запишем квадратичную форму в виде $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} — 2x_{1}x_{2} — 2x_{2}x_{1} + x_{2}^{2} + x_{1}x_{3} + x_{3}x_{1} — x_{3}^{2}.$$
    2. Здесь $a_{11}=2,a_{12}=-2,a_{13}=1,a_{21}=-2,a_{22}=1,a_{23}=0,a_{31}=1,a_{32}=0,a_{33}=-1,$ следовательно, матрица этой квадратичной формы есть $$\begin{pmatrix} 2 & -2 &1 \\ -2 & 1 & 0 \\ 1 & 0 & -1\\ \end{pmatrix}.$$
  2. Установить характер знакоопределенности квадратичной формы $$Q(x_{1},x_{2},x_{3})=4x_{1}^{2}+6x_{2}^{2}+2x_{3}^{2}+6x_{1}x_{2}$$

    Решение
    1. Найдём матрицу квадратичной формы $$A = \begin{pmatrix} 4 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2\\ \end{pmatrix}.$$
    2. Теперь проверим знакоопределенность формы по критерию Сильвестра $$
      \triangle_{1} = 4 \gt 0, \triangle_{2} = \begin{vmatrix}4 & 3 \\3 & 6 \end{vmatrix} = 15 \gt 0, \triangle_{3} =\begin{vmatrix} 4 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2\\ \end{vmatrix} = 2\cdot15 = 30 \gt 0,$$ значит, квадратичная форма положительно определенная.
  3. Найти все значения $\lambda,$ при которых положительно определена квадратичная форма $$Q(x_{1},x_{2},x_{3}) = 2x_{1}^{2} + \lambda x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} + 4x_{1}x_{3}. $$

    Решение
    1. Найдём матрицу квадратичной формы $$A = \begin{pmatrix} 2 & 2 & 2 \\ 2 & \lambda & 0 \\ 2 & 0 & 5\\ \end{pmatrix}.$$
    2. Найдём главные миноры: $$
      \triangle_{1} = 2 , \triangle_{2} = \begin{vmatrix}2 & 2 \\2 & \lambda \end{vmatrix} = 2\lambda — 4 , \triangle_{3} =\begin{vmatrix} 2 & 2 & 2 \\ 2 & \lambda & 0 \\ 2 & 0 & 5\\ \end{vmatrix} = 6\lambda — 20.$$

    3. По критерию Сильвестра, $Q$ положительно определена тогда и только тогда, когда $$\begin{cases}2\lambda -4 \gt 0, \\6\lambda — 20 \gt 0\end{cases}\Leftrightarrow \lambda \gt \frac{10}{3}.$$

Проверка знаний по пройденной теме

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Список использованной литературы

7.6 Теоремы о среднем

Теорема 1 (первая теорема о среднем значении). Пусть функции $f$ и $g$ интегрируемы на $\left [ a,b \right ]$, причем функция $g$ не меняет знак на $\left [ a,b \right ]$. Пусть $m=\textrm{inf}_{x\in\left [ a,b \right ]}f(x), M=\textrm{sup}_{x\in\left [ a,b \right ]} f(x)$. Тогда найдется такое число $\mu\in\left [ m,M \right ]$, что $$\int_{a}^{b}f(x)g(x)dx=\mu\int_{a}^{b}g(x)dx.$$

Можем считать, что $a<b$, т.к. если поменять местами $a$ и $b$, то знаки обеих частей равенства поменяются на противоположные. Пусть $g(x)\geq0$. Неравенство $m\leq f(x)\leq M$ умножим на $g(x)$ и проинтегрируем от $a$ до $b$. В силу монотонности и линейности интеграла получим $$m\int_{a}^{b}g(x)dx\leq\int_{a}^{b}f(x)g(x)dx\leq M\int_{a}^{b}g(x)dx.$$ Если $\int_{a}^{b}g(x)dx=0$, то из этого неравенства видно, что утверждение теоремы справедливо при любом $\mu$. Если же $\int_{a}^{b}g(x)dx>0$, то положим $$\mu=\frac{\int_{a}^{b}f(x)g(x)dx}{\int_{a}^{b}g(x)dx}.$$ Тогда из полученного выше равенства следует, что $m\leq\mu\leq M$, и теорема доказана.

Случай $g(x)\leq0$ рассматривается аналогично.

Следствие. Если в условиях теоремы 1 функция $f$ непрерывна на $\left [ a,b \right ]$, то найдется такая $\xi\in\left [ a,b \right ]$, что $$\int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx.$$

Действительно, в этом случае, по теореме Больцано — Коши о промежуточном значении, число $\mu$ является значением функции $f$ в некоторой точке $\xi\in\left [ a,b \right ]$.

Лемма.Пусть функция $g$ интегрируема на отрезке $\left [ a,b \right ]$. Тогда функция $G(x)\equiv\int_{a}^{x}g(t)dt (a\leq x\leq b)$ равномерно непрерывна на $\left [ a,b \right ]$.

Пусть $x^{\prime} , x^{\prime\prime} \in\left [ a,b \right ] , x^{\prime}<x^{\prime\prime}$. Тогда $$G(x^{\prime\prime})-G(x^{\prime})=\int_{a}^{x^{\prime\prime}}g(t)dt-\int_{a}^{x^{\prime}}g(t)dt =$$ $$=\int_{a}^{x^{\prime}}g(t)dt+\int_{x^{\prime}}^{x^{\prime\prime}}g(t)dt-\int_{a}^{x^{\prime}}g(t)dt=\int_{x^{\prime}}^{x^{\prime\prime}}g(t)dt.$$ Поскольку $g$ интегрируема, то она ограничена, т.е. существует такой $M$, что $\left | g(t) \right |\leq M$ для всех $t\in\left [ a,b \right ]$. Поэтому получаем $$\mid G(x^{\prime\prime})-G(x^{\prime})\mid\leq\int_{x^{\prime}}^{x^{\prime\prime}}\mid g(t)\mid dt\leq M(x^{\prime\prime} — x^{\prime}).$$ Отсюда следует, что функция $G$ равномерно непрерывна на $\left [ a,b \right ]$.

Теорема 2 (вторая теорема о среднем значении). Пусть функции $f$ и $g$ интегрируемы на $\left [ a,b \right ]$, причем функция $f$ монотонна на $\left [ a,b \right ]$. Тогда существует точка $\xi\in\left [ a,b \right ]$, такая, что $$\int_{a}^{b}f(x)g(x)dx=f(a)\int_{a}^{\xi}g(x)dx+f(b)\int_{\xi}^{b}g(x)dx.$$

Сначала предположим что $f$ убывает на $\left [ a,b \right ]$ и неотрицательна. Возьмем произвольные разбиение $a=x_{0}<x_{1}<…< x_{n}=b$ отрезка $\left [ a,b \right ]$. Тогда, по свойству аддитивности интеграла, $$I\equiv\int_{a}^{b}f(x)g(x)dx=\sum_{i=0}^{n-1}\int_{x_{i}}^{x_{i+1}}f(x)g(x)dx=$$ $$=\sum_{i=0}^{n-1}f(x_{i})\int_{x_{i}}^{x_{i+1}}g(x)dx+\sum_{i=0}^{n-1}\int_{x_{i}}^{x_{i+1}}\left [ f(x)-f(x_{i}) \right ]g(x)dx\equiv I^{\prime}+\rho.$$ Для оценки суммы $\rho$ воспользуемся тем, что интегрируемая функция $g$ ограничена, т.е. существует такое $M$, что $\mid g(x)\mid\leq M, x\in\left [ a,b \right ]$. Тогда получим $$\mid\rho\mid\leq\sum_{i=0}^{n-1}\int_{x_{i}}^{x_{i+1}}\mid f(x)-f(x_{i})\mid\mid g(x)\mid dx\leq M\sum_{i=0}^{n-1}\omega_{i}\Delta x_{i},$$ где $\omega_{i}$ — колебания функции f на $\left [ x_{i},x_{i+1} \right ]$. Правая часть стремится к нулю при стремлении к нулю диаметра разбиения в силу критерия интегрируемости Римана. Следовательно, сумма $I^{\prime}$ стремится к интегралу $I$. Оценим $I^{\prime}$. Для этого обозначим $G(x)=\int_{a}^{x}g(t)dt$. Получим $$I^{\prime}=\sum_{i=0}^{n-1}f(x_{i})\left [ G(x_{i+1}-G(x_{i}) \right ]=\sum_{i=0}^{n-1}f(x_{i}G(x_{i+1})-\sum_{i=0}^{n-1}f(x_{i})G(x_{i})=$$ $$=\sum_{i=1}^{n}f(x_{i-1})G(x_{i})-\sum_{i=1}^{n-1}f(x_{i})G(x_{i})=$$ $$f(x_{n-1})G(x_{n})+\sum_{i=1}^{n-1}\left [ f(x_{i-1})-f(x_{i}) \right ]G(x_{i}).$$ Мы воспользовались равенством $G(x_{0})=G(a)=0.$

Обозначим через $L$ и $U$ соответственно нижнюю и верхнюю грани функции $G$ на $\left [ a,b \right ]$. Поскольку, в силу леммы, функция $G$ непрерывна на $\left [ a,b \right ]$, то они существуют в силу первой теоремы Вейерштрасса. Учитывая также, что функция $f$, по предположению, неотрицательна и монотонно убывающая, т.е. $f(x_{i-1})-f(x_{i})\geq0$, получаем следующее неравенство: $$L\left [ f(x_{n-1})+\sum_{i=1}^{n-1}\left [ f(x_{i-1})-f(x_{i}) \right ] \right ]\leq$$ $$\leq I^{\prime}\leq U\left [ f(x_{n-1}+\sum_{i=1}^{n-1}\left [ f(x_{i-1})-f(x_{i}) \right ] \right ].$$ При этом мы использовали неравенство $L\leq G(x_{i})\leq U.$ Поскольку, как легко видеть, сумма в квадратных скобках равна $f(x_{0})=f(a)$, то полученное неравенство принимает вид $Lf(a)\leq I^{\prime}\leq Uf(a).$ Но поскольку $I^{\prime}\rightarrow I$ при $d\textrm(\prod)\rightarrow0$, то отсюда получаем $Lf(a)\leq I\leq Uf(a).$ Разделив это неравенство на $f(a)>0,$ получим $L\leq\frac{I}{f(a)}.$ Отсюда следует, что $I=f(a)G(\xi)$, а учитывая определение функции $G$, получаем равенство $$\int_{a}^{b}f(x)g(x)dx=f(a)\int_{a}^{\xi}g(x)dx (\xi\in\left [ a,b \right ]). (7.4)$$

Итак, равенство (7.4) доказано нами в предположении, что функция $f$ убывает и неотрицательна. Рассмотрим теперь случай, когда $f$ убывает на $\left [ a,b \right ]$. Положим $\bar{f}(x)=f(x)-f(b).$ Тогда $\bar{f}$ убывает и неотрицательна. По доказанному, найдется точка $\bar{\xi}$, такая что $$\int_{a}^{b}\bar{f}(x)g(x)dx=\bar{f}(a)\int_{a}^{\bar{\xi}}g(x)dx (\bar{\xi}\in\left [ a,b \right ]).$$ Учитывая, что $\bar{f}(x)=f(x)-f(b)$, отсюда получаем $$\int_{a}^{b}\left [ f(x)-f(b) \right ]g(x)dx=\left [ f(a)-f(b) \right ]\int_{a}^{\bar{\xi}}g(x)dx,$$ или, что то же самое, $$\int_{a}^{b}f(x)g(x)dx=f(a)\int_{a}^{\bar{\xi}}g(x)dx+f(b)\int_{a}^{b}g(x)dx-f(b)\int_{a}^{\bar{\xi}}g(x)dx=$$ $$=f(a)\int_{a}^{\bar{\xi}}g(x)dx+f(b)\int_{\bar{\xi}}^{b}g(x)dx.$$ Этим доказано равенство (7.3).

В случае когда функция $f$ возрастает и неотрицательна на $\left [ a,b \right ]$, аналогично тому, тому как было доказано равенство (7.4), можно показать, что существует такая точка $\xi$, что $$\int_{a}^{b}f(x)g(x)dx=f(b)\int_{\xi}^{b}g(x)dx. (7.5)$$ Далее, из (7.5) легко можно получить (7.3) точно так же, как и (7.3) было получено из (7.4).

Замечание. Формулы (7.3) — (7.5) называются формулами Бонне. В этих равенствах точки $\xi$, вообще говоря, разные. В самом деле, мы можем изменить функцию $f$ в точках $a$ и $b$, сохранив при этом монотонность функции $f$. При этом левая часть (7.3) не изменится, а изменение множителей $f(a)$ и $f(b)$ перед интегралами справа в (7.3), очевидно, повлечет изменение значение $\xi$ справа в (7.3).

Вторую теорему о среднем иногда записывают в следующем виде: $$\int_{a}^{b}f(x)g(x)dx=f(a+0)\int_{a}^{\xi^{\prime}}g(x)dx+f(b-0)\int_{\xi^{\prime}}^{b}g(x)dx.$$ В этом равенстве точка $\xi^{\prime}$, вообще говоря, не совпадает со значением $\xi$ в равенстве (7.3).

Примеры применения теорем о среднем.

Пример 1. Найти $$\lim_{n\rightarrow\infty}\int_{0}^{1}\frac{x^n}{1+x}dx.$$ Оценим $$0\leq\int_{0}{1}\frac{x^n}{1+x}dx\leq\int_{0}^{1}x^ndx=\frac{1}{n+1}.$$ Отсюда получаем $$\lim_{n\rightarrow\infty}\int_{0}^{1}\frac{x^n}{1+x}dx=0.$$

Пример 2. Найти $$\lim_{n\rightarrow\infty}\int_{0}{\frac{\pi}{2}}\sin^n xdx.$$ Зафиксируем $\varepsilon>0$. Тогда получим $$\int_{0}{\frac{\pi}{2}}\sin^n xdx=\int_{0}^{\frac{\pi}{2}-\frac{\varepsilon}{2}}\sin^n xdx+\int_{\frac{\pi}{2}-\frac{\varepsilon}{2}}^{\pi}{2}\sin^n xdx\leq$$ $$\leq(\sin(\frac{\pi}{2}-\frac{\varepsilon}{2}))^n\frac{\pi}{2}+{\varepsilon}{2}.$$ Поскольку $\sin(\frac{\pi}{2}-\frac{\varepsilon}{2})<1$, то первое слагаемое справа стремится к нулю при $n\rightarrow\infty$. Поэтому найдется такое $N$, что для всех $n\geq N$ справедливо неравенство $$(\sin(\frac{\pi}{2}-\frac{\varepsilon}{2}))^n\frac{\pi}{2}<\frac{\varepsilon}{2}.$$ Итак, для заданного $\varepsilon>0$ мы нашли номер $N$, начиная с которого $$\int_{0}{\frac{\pi}{2}}\sin^n xdx<\varepsilon.$$ Это означает что $$\lim_{n\rightarrow\infty}\int_{0}^{\frac{\pi}{2}}\sin^n xdx=0.$$

Пример 3. Оценить сверху $$I\equiv\int_{0}^{1}\frac{\sin x}{1+x^2}dx.$$

Первый способ.

Применяя первую теорему о среднем, получаем $$I=\frac{1}{1+\xi^2}\int_{0}^{1}\sin xdx=\frac{1}{1+\xi^2}(-\cos x)\mid_{0}^{1}=\frac{1}{1+\xi^2}(1-\cos 1)\leq 1-\cos 1.$$

Второй способ.

В силу первой теоремы о среднем $$I=\sin\eta\int_{0}{1}\frac{dx}{1+x^2}=\sin\eta \arctan x\mid_{0}^{1}=\frac{\pi}{4}\sin\eta\leq\frac{\pi}{4}\sin 1.$$

Пример 4. Оценить интеграл $$I\equiv\int_{A}^{B}\frac{\sin x}{x}dx, 0<A<B<+\infty.$$

Первый способ.

Применим вторую теорему о среднем. Для этого обозначим $f(x)=\frac{1}{x}$ и $g(x)=\sin x$. Функция $f$ монотонна на $\left [ A,B \right ]$, так что по второй формуле Бонне получаем $$I=\frac{1}{A}\int_{A}^{\xi}\sin xdx = \frac{1}{A}(-\cos x)\mid_{A}^{\xi}=\frac{1}{A}(\cos A — \cos \xi).$$ Отсюда следует, что $\mid I\mid\leq\frac{2}{A}.$

Второй способ.

Применяя первую теорему о среднем, получим $$I=\sin\xi\int_{A}^{B}\frac{dx}{x}=\sin\xi\ln\frac{B}{A}.$$ Отсюда следует, что $\mid I\mid\leq\ln\frac{B}{A}.$

Примеры решения задач

Пример 1 Найти среднее значение функции $f(x)=\sin^2 x$ на отрезке $\left [ 0;2\pi \right ]$.

Решение

Пользуясь теоремой о среднем имеем:$$\mu=\frac{1}{b-a}\int_{a}^{b}f(x)dx=\frac{1}{2\pi}\int_{0}^{2\pi}\sin^2 xdx=\frac{1}{4\pi}\int_{0}^{2\pi}(1-\cos 2x)dx=$$ $$=\frac{1}{4\pi}(x-\frac{1}{2}\sin 2x)\mid_{0}{2\pi}=\frac{1}{4\pi}(2\pi-\frac{1}{2}\sin 4\pi)=\frac{1}{2}.$$ Итак, $\mu=\frac{1}{2}.$

Литература

  • В. И. Коляда, А. А. Кореновский «Курс лекций по математическому анализу». — Одесса: Астропринт, 2009, ч.1, раздел 7 «интеграл Римана».(стр. 197 — 203).
  • Б. П. Демидович «Сборник задач и упражнений по математическому анализу» 13-е издание, 1997г.

Теоремы о среднем

5.3 Производная сложной и обратной функций

Теорема (о производной композиции). Пусть функция $f$ определена на интервале $I$ и дифференцируема в точке $x_0 ∈ I$, а функция $g$ определена на интервале $J ⊃ f(I)$ и дифференцируема в соответствующей точке $y_0 = f (x_0) ∈ J$. Тогда сложная функция $\varphi(x) = g(f(x))$ дифференцируема в точке $x_0$, причем $$\varphi'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$

Так как функция $g$ дифференцируема в точке $y_0$,
то $$g(y)-g(y_0) = g'(y_0)\cdot (y-y_0)+r(y)\cdot (y-y_0),\quad\quad(5.1)$$ где $\displaystyle \lim_{y\to y_0}\, r(y)=0$. Доопределим функцию $r$ в точке $y_0$ по непрерывности, положив $r (y_0) = 0$. В равенстве (5.1) считаем, что $y = f(x)$. Тогда получим $$\varphi(x)-\varphi(x_0) = g'(y_0)(f(x)-f(x_0)) + r(f(x))(f(x)-f(x_0)).$$ Разделив это равенство на $x−x_0$ и устремив $x \to x_0$, получаем $$\displaystyle \lim_{x\to x_0}\, \frac{\varphi(x)-\varphi(x_0)}{x-x_0}=$$ $$=g'(f(x_0)) \displaystyle \lim_{x\to x_0} \, \frac{f(x)-f(x_0)}{x-x_0}+\displaystyle \lim_{x\to x_0} \, r(f(x))\frac{f(x)-f(x_0)}{x-x_0}.$$ Последний предел справа равен нулю, поскольку $\displaystyle \lim_{x\to x_0}\, r(f(x))=0$ (по теореме о непрерывности сложной функции) и $\displaystyle \lim_{x\to x_0}\, \frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)$. Итак, получили, что $\varphi'(x_0) = g'(f(x_0))\cdot f'(x_0)$.

Теорема (о производной обратной функции). Пусть функция $f$ строго возрастает на интервале $I$, непрерывна на $I$, дифференцируема в точке $x_0 \in I$ и $f'(x_0)\neq 0$. Тогда обратная функция $g = f^{-1}$ дифференцируема в точке $y_0 = f(x_0)$, причём $g'(x_0) = \frac{1}{f'(x_0)}$.

Рассмотрим разностное отношение $\frac{g(y)-g(y_0)}{y-y_0}$. Обозначим $x=g(y)$. Тогда $y=f(x)$ и $$\frac{g(y)-g(y_0)}{y-y_0}=\frac{x-x_0}{f(x)-f(x_0)}.$$ Поскольку функция $g$ непрерывна (в силу теоремы о непрерывности обратной функции), то при $y\to y_0$ имеем $x=g(y)\to g(y_0) = x_0$, и поэтому $$\displaystyle \lim_{y\to y_0}\,\frac{g(y)-g(y_0)}{y-y_0}=\frac{1}{\displaystyle \lim_{x\to x_0}\,\frac{f(x)-f(x_0)}{x-x_0}}=\frac{1}{f'(x_0)},$$ т. е. существует предел левой части и он равен $\frac{1}{f'(x_0)}$.

Практические задания
1. Найти производную обратной функции $g(y)=\arcsin x,\, -\frac{\pi}{2}\leqslant y \leqslant\frac{\pi}{2},\, -1\leqslant x\leqslant 1$.

Решение

Обратная функция к $g(y)$: $$f(x)=g^{-1}(y)=\sin y,$$
Пользуясь вышеописанными формулами и таблицей производных получаем: $$g'(y)=(\arcsin x)’ = \frac{1}{x’} = \frac{1}{\cos y}$$ Так как $-\frac{\pi}{2}\leqslant y \leqslant\frac{\pi}{2}$, то $\cos y > 0$, поэтому $\cos y=\sqrt{1-\sin^2 y}=\sqrt{1-x^2}$. Таким образом, $(\arcsin x)’=\frac{1}{\sqrt{1-x^2}}$.

2. Найти производную обратной функции $g(y)=\text{arctg x},\, -\frac{\pi}{2}\leqslant y \leqslant\frac{\pi}{2},\, -\infty <x< +\infty$

Решение

Обратная функция к $g(y)$: $$f(x)=g^{-1}(y)=\text{tg y}$$
Пользуясь вышеописанными формулами и таблицей производных имеем: $$g'(y)=(\text{arctg x})’=\frac{1}{f'(x)}=\cos^2 y=\frac{1}{1+\text{tg}^2 y}=\frac{1}{1+x^2};$$ итак, $(\text{arctg x})’=\frac{1}{1+x^2}$.

3. Найти производную сложной функции $y=\ln^2\arcsin \frac{1}{x},\, x>1$

Решение

Используя вышеприведённые формулы и таблицу производных получаем:$$y’=(\ln^2\arcsin\frac{1}{x})’=2\ln\arcsin\frac{1}{x}(\ln\arcsin\frac{1}{x})’=$$ $$=2\ln\arcsin\frac{1}{x}\frac{1}{\arcsin\frac{1}{x}}(\arcsin\frac{1}{x})’=$$ $$=2\frac{\ln\arcsin\frac{1}{x}}{\arcsin\frac{1}{x}}\frac{1}{\sqrt{1-\frac{1}{x^2}}}(\frac{1}{x})’=-\frac{2\ln\arcsin\frac{1}{x}}{|x|\sqrt{x^2-1}\arcsin\frac{1}{x}}$$

4. Найти производную сложной функции $y=\frac{1}{2a}\ln|\frac{x-a}{x+a}|,\, x\neq a,\, x\neq -a$.

Решение

Используя вышеприведённые формулы и таблицу производных получаем:$$y’=\frac{1}{2a}\frac{(\frac{x-a}{x+a})’}{\frac{x-a}{x+a}}=$$ $$=\frac{1}{2a}\frac{x+a}{x-a}\frac{x+a-(x-a)}{(x+a)^2}=\frac{1}{x^2-a^2}$$

Тестирование. Производная сложной и обратной функции

Пройдите тест для проверки понимания только что прочитанной темы