16.1 Равномерная сходимость

Определение. Пусть на множестве $E$ задана последовательность функций $f_{n}\left(n=1,2…\right)$, сходящаяся на $E$ поточечно к функции $f$. Говорят, что последовательность {$f_{n}$} сходится равномерно к функции $f$ на множестве $E$, если для любого $\varepsilon > 0$ найдется такой номер $N$, зависящий только от $\varepsilon$ (и не зависящий от $x$), что для каждого $n \geq N$ справедливо неравенство $\mid f_{n}\left(x\right)- f\left(x\right)\mid < \varepsilon$.

Определение поточечной сходимости на множестве $E$ в кванторах можно записать следующим образом:
$$ \forall x \in E \; \forall\varepsilon > 0 \; \exists N = N\left(\varepsilon,x\right) : \forall n \geq N \mid f_{n}\left(x\right)- f\left(x\right)\mid < \varepsilon, $$ а равномерной сходимости — так: $$ \forall \varepsilon > 0 \; \exists N = N\left(\varepsilon\right) : \forall n \geq N \; \forall x \in E \mid f_{n}\left(x\right)- f\left(x\right)\mid < \varepsilon.$$ В определении поточечной сходимости номер $N$ зависит, вообще говоря, от $\varepsilon$ и от $x$, а в определении равномерной сходимости $N$ зависит только от $\varepsilon$ и не зависит от $x$. Иначе говоря, поточечная сходимость будет равномерной, если для заданного $\varepsilon > 0 $ номер $N$ можно подобрать так, чтобы он был пригоден сразу для всех $x \in E$.

Теперь видно, что свойство равномерной сходимости не слабее, чем свойство поточечной сходимости, т. е. из равномерной сходимости следует поточечная сходимость. Обратное неверно. Может оказаться, что для каждого $\varepsilon > 0$ и для $x \in E$ найдется номер $N = N \left(\varepsilon,x\right)$, но для всех сразу $x \in E$ номер $N$, не зависящий от $x$, может и не существовать. Приведем

Пример 1. Пусть $f_{n}(x) = x^{n} (x \in E \equiv \left[0,1\right])$. Мы уже видели, что $$f(x) = \lim_{n\to\infty} f_{n}(x) = \begin{cases}0, & 0\leq x < 1, \\1, & x = 1.\end{cases}$$ Если бы последовательность {$x^{n}$} сходилась к функции $f$ равномерно, то неравенство $\mid x^{n} — f(x)\mid < \varepsilon$ при достаточно больших $n \; (n\geq N(\varepsilon))$ должно было быть выполненным сразу для всех $x \in E$. Но это не так, поскольку при фиксированном $n$ имеем $\lim_{x\to1-0} x^{n} = 1 $, так что в любой левой полуокрестности точки $x_{0}=1$ найдется такая точка $x_{1} \frac{1}{2}$. Поэтому если мы возьмем $\varepsilon_{0} > \frac{1}{2}$, то получим неравенство $\mid x_1^n — 0\mid\geq \varepsilon_{0} $. Окончательно имеем $$\exists \varepsilon_{0} (\varepsilon_{0} = \frac{1}{2}) : \forall N \; \exists n \geq N (n = N) \; \exists x_{1} =$$ $$= x_{1}(\varepsilon, n) \in E : \mid f_{n}(x_{1}) — f(x_{1})\mid \geq \varepsilon_{0}$$ Это означает, что данная последовательность не является равномерно сходящейся на множестве $E$.

В этом примере «плохие» точки $x_{1}$, т.е. такие, в которых выполнено неравенство $\mid f_{n}(x_{1}) — f(x_{1})\mid \geq \varepsilon_{0}$, находится вблизи точки $x_{0}=1$. Если же мы отделимся от $x_{0}$, т.е. рассмотрим последовательность ${x^{n}}$ на множестве $E_{\delta}=\left[0,1 — \delta\right]$, где $\delta > 0$ — произвольное число, то сходимость данной последовательности к функции $f(x)\equiv0$ на множестве $E_{\delta}$ уже будет равномерной. Действительно, в этом случае $$\mid f_{n}(x) — f(x) \mid = x^{n} \leq (1 — \delta)^{n} < \varepsilon \; \; \; (0\leq x \leq 1-\delta), $$ если только $n \geq N(\varepsilon), $ где $N(\varepsilon) = \left[\frac{\ln \varepsilon}{\ln (1-\delta)}\right] + 1 $ не зависит от $x \in E_{\delta}$.

Пример 2. Для последовательности функций $f_{n}(x) = \frac{nx}{1+n^{2}x^{2}} \; \; (x \in E\equiv \mathbb{R})$ ранее мы показали, что $$f(x) = \lim_{x\to\infty} \frac{nx}{1+n^{2}x^{2}} = 0 \; \; \; (x \in \mathbb{R}).$$ Поэтому $\mid f_{n}(x) — f(x)\mid \rightarrow 0 \; \; \; (n \rightarrow \infty )$ при каждом фиксированном $x \in \mathbb{R}$. Однако при фиксированном $n$ наибольшее значение функция $f_{n}(x) = \frac{nx}{1+n^{2}x^{2}}$ достигает в точке $x_{n} = \frac{1}{n}$ и это значение равно $f_{n}(\frac{1}{n}) = \frac{1}{2}$. Таким образом, для $\varepsilon_{0}=\frac{1}{2}$ неравенство $\mid f_{n}(x)-f(x)\mid < \varepsilon_{0}$ не может быть выполненным сразу для всех $x \in \mathbb{R}$. Значит, последовательность {$f_{n}$} сходится к функции $f \equiv 0$ на $\mathbb{R}$, но неравномерно, т.е. $$\exists \varepsilon_{0} ( \varepsilon_{0} = \frac{1}{2}) : \forall N \; \exists n\geq N (n=N) \;
\exists x_{1} (x_{1} = \frac{1}{n}) : \mid f_{n}(x_{1}) — f(x_{1})\mid \geq \varepsilon_{0}.$$

Если же зафиксировать число $\delta > 0 $, то нетрудно показать, что на множестве $E_{\delta} = \left[\delta,+\infty\right)$ последовательность функций $f_{n}(x) = \frac{nx}{1+n^{2}x^{2}}$ сходится равномерно. Действительно, неравенство $$\mid f_{n}(x) — f(x)\mid = \frac{nx}{1+n^{2}x^{2}} \leq \frac{1}{nx} \leq \frac{1}{n\delta} < \varepsilon \; \; \; (x \in E_{\delta})$$ выполнено, если только $n \geq N(\varepsilon)$, где $ N(\varepsilon) = \left[\frac{1}{\varepsilon\delta}\right] + 1 $ не зависит от $x \in E_{\delta}$

Геометрический смысл равномерной сходимости состоит в том, что начиная с номера $N$ графики функций $f_{n}(x)$ расположены в $\varepsilon$-полосе графика функции $f$.

Равномерная сходимость ряда определяется как равномерная сходимость последовательности его частичных сумм.

Определение. Пусть на множестве $E$ задана последовательность функций $\left\{u_{n}\right\}$. Ряд $\sum_\left(n=1\right)^\infty u_{n}$ называется равномерно сходящимся на множестве $E$, если он сходится поточечно на $E$ и последовательность его частичных сумм равномерно сходится к сумме ряда на множестве $E$.

Другими словами, определение равномерной сходимости ряда $\sum_\left(n=1\right)^\infty u_{n}$, сходящегося к функции $f$ на множестве $E$, можно сформулировать следующим образом. Обозначим через $S_{n}(x) = \sum_\left(k=1\right)^n u_{k}(x)$ частичные суммы ряда $ \sum_\left(n=1\right)^\infty u_{n}(x), r_{n}(x) = \sum_\left(k = n+1\right)^\infty u_{k}(x)$ — остаток после $n$-го слагаемого. Тогда $S_{n}(x) + r_{n}(x) = f(x),$ а равномерная сходимость ряда означает, что для любого $\varepsilon > 0$ найдется такой номер $N$ (зависящий только от $\varepsilon$), что для всех $n \geq N$ и для всех $x \in E$ справедливо неравенство $\mid S_{n}(x) — f(x)\mid < \varepsilon$. Но так как $\mid S_{n}(x) — f(x)\mid = \mid r_n(x)\mid$, то получаем $$\forall \varepsilon > 0 \; \exists N : \forall n \geq N \; \forall x \in E \;\; \mid r_{n}(x)\mid < \varepsilon. $$ Это в свою очередь означает, что остаток ряда равномерно стремится к нулю. Таким образом, получили следующее эквивалентное определение равномерной сходимости ряда.

Ряд $\sum_\left(n=1\right)^\infty u_{n}(x)$ называется равномерно сходящимся на множестве $E$, если последовательность его остатков после $n$-го слагаемого {$r_{n}$} равномерно сходится к нулю на множестве $E$.

Это определение более выгодно по сравнению с предыдущим тем, что оно использует лишь слагаемые исходного ряда и не использует сумму самого ряда $f(x)=\sum_\left(n=1\right)^\infty u_{n}(x)$.

Пример 1. Ряд $\sum_\left(n=1\right)^\infty x^{n}$ сходится на интервале $(-1,1)$ т.к. он представляет собой сумму геометрической прогрессии со знаменателем $x, \mid x \mid < 1 $. Исследуем его на равномерную сходимость. Для этого рассмотрим остаток $r_{n}(x) = \sum_\left(k =n+1\right)^\infty x^{k} = \frac{x^{n+1}}{1-x}$. При фиксированном $x$ и $n \rightarrow \infty$ имеем $r_{n}(x) \rightarrow 0$. Это означает, что данный ряд сходится при каждом $x$, т.е. поточечно. Если же зафиксировать $n$ к $1-0$, то получим, что $\frac{x^{n+1}}{1-x} \rightarrow +\infty$, т.е. если $x$ близок к $1$, то $r_{n}(x)$ принимает большие значения. Это означает, что неравенство $\mid r_{n}(x)\!\!\mid \; = \frac{\mid x\mid^{n+1}}{1-x} < \varepsilon$ сразу для все $x \in (-1,1)$, но неравномерно.

С другой стороны, на любом отрезке $\left[-q,q\right]$, где $0<q<1$, ряд $\sum_\left(n=1\right)^\infty x^{n}$ сходится равномерно. Действительно, в этом случае $$\mid r_{n}(x)\!\!\mid = \; \mid\sum_\left(k=n+1\right)^\infty x^{n}\!\!\mid = \; \mid\frac{x^{n+1}}{1-x} \mid \; \leq \frac{q^{n+1}}{1-q}, \; \; \; (x \in \left[-q,q\right]).$$ Отсюда следует, что последовательность {$r_{n}(x)$} равномерно сходится к нулю на $[-q,q]$, т.е. данный ряд равномерно сходится на $[-q,q]$.

Пример 2. Рассмотрим ряд $\sum_\left(n=0\right)^\infty \frac{x^{2}}{(1+x^{2})^{n}}$. Имеем $$r_{n}(x) = \begin{cases}\frac{x^{2}}{(1+x^{2})^{n}}, & x \neq 0\\0, & x = 0.\end{cases}$$ Если $x$ фиксировано, то $r_{n}(x) \rightarrow 0$ при $n \rightarrow \infty$. Это означает, что ряд является сходящимся при любом $x \in \mathbb{R}$, т.е. он сходится поточечно. Если зафиксируем $n$, то при стремлении $x$ к нулю получаем, что $r_{n}(x) \rightarrow 1$, а это означает, что неравенство $\mid r_{n}(x)\!\! \mid \; = \frac{1}{(1+x^{2})^{n}} < \varepsilon$ при $0 <\varepsilon< 1$ не может выполняться сразу для всех $x \in \mathbb{R}$, каким бы большим номер $n$ мы ни взяли. Таким образом, $r_{n}(x)\rightarrow 0 \; (n \rightarrow \infty)$, но неравномерно. Следовательно, данный ряд сходится на $\mathbb{R}$ неравномерно.

Замечание. Пусть задан ряд $$\sum_\left(n=1\right)^\infty u_{n}(x) \; \; \; (x \in E).\qquad
(16.2)$$ Рассмотри величины $$\mu_{n}=\sup_{x\in E} \mid \sum_\left(k=n+1\right)^\infty u_{k}(x)\mid = \sup_{x\in E} \mid r_{n}(x)\mid.$$ Тогда определение равномерной сходимости ряда (16.2) на множестве $E$ можно сформулировать следующим образом.

Ряд (16.2) сходится равномерно на множестве $E$, если $\lim_{n\to\infty} \mu_{n} = 0.$

Действительно, если $\mu_{n}\rightarrow 0 \; (n \rightarrow \infty)$, то для любого $\varepsilon > 0$ найдется такой номер $N$, что для всех $n \geq N$ справедливо неравенство $\mu_{n} < \varepsilon$, т.е. для всех $x \in E$ справедливо неравенство $\mid r_{n}(x)\mid < \varepsilon$, а значит ряд (16.2) сходится равномерно. Обратно, если $r_{n}(x)$ равномерно сходится к нулю, то для всех $x \in E$ справедливо неравенство $\mid r_{n}(x)\mid < \varepsilon$. Поэтому и $\mu_{n} = \sup_{x\in E} \mid r_{n}(x)\mid \leq \varepsilon$, т.е. $\mu_{n} \rightarrow 0$ при $n \rightarrow \infty$.

Пример 3. Исследовать на равномерную сходимость ряд $\sum_\left(n=1\right)^\infty \frac{(-1)^{n}}{x^{2}+n}$ на множестве $\mathbb{R}$

Данный ряд является рядом лейбницевского типа и поэтому, согласно теореме об оценке остатка ряда лейбницевского типа, $\mid r_{n}(x)\mid \leq \frac{1}{x^{2}+n+1}\leq \frac{1}{n+1}$. Таким образом, $\mu_{n}\leq \frac{1}{n+1} \rightarrow 0 \; \; (n\rightarrow \infty)$, и, следовательно, данный ряд сходится равномерно на $\mathbb{R}$.

Теорема(критерий Коши равномерной сходимости последовательности). Для того чтобы последовательность функций {$f_{n}$} равномерно сходилась на множестве $E$ к некоторой функции, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовал такой номер $N$, зависящий только от $\varepsilon$, что для любых $n,m \geq N$ и для любого $x \in E$ было выполнено неравенство $\mid f_n(x)-f_m(x)\mid < \varepsilon$.

Необходимость. Пусть последовательность {$f_n$} сходится к $f$ равномерно на $E$. Зададим $\varepsilon > 0 $. Тогда найдется такой номер $N$, что для все $n\geq N$ и для всех $x \in E$ справедливо неравенство $\mid f_n(x) — f(x)\mid < \frac{\varepsilon}{2}$. Если возьмем произвольные, $n,m \geq N$, то для любого $x \in E$ получим $$\mid f_n(x) — f_m(x)\mid \leq \mid f_n(x) — f(x)\mid + \mid f_m(x) — f(x)\mid < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$ т.е. выполнено условие теоремы (условие Коши).
Достаточность. Пусть выполнено условие Коши. Зафиксируем $x \in E$ и получим числовую последовательность {$f_n(x)$}, которая, согласно условию Коши, является фундаментальной и, следовательно, сходящейся. Обозначим ее предел через $f(x)$. Так как $x \ in E$ произвольное, то, проделав эту операцию для все $x \in E$, получим функцию $f(x)$. Покажем, что последовательность {$f_n(x)$} стремится к $f(x)$ равномерно на $E$. Зададим $\varepsilon > 0$. Тогда найдется такой номер $N$, что для всех $n,m\geq N$ и для любого $x \in E$ справедливо неравенство $\mid f_n(x)-f_m(x)\mid < \varepsilon$. Зафиксируем $n \geq N, x \in E$ и устремим $m\rightarrow \infty$. Тогда получим $\mid f_n(x)-f(x)\mid \leq \varepsilon.$ Это неравенство выполнено для любого $n \geq N$ и для всех $x \in E$, а это и означает, что последовательность {$f_n$} сходится к $f$ равномерно на $E$.

Доказанную теорему можно переформулировать для рядов следующим образом.

Теорема(критерий Коши равномерной сходимости ряда). Для того чтобы ряд $\sum_\left(n=1\right)^\infty u_n(x)$ равномерно сходился на множестве $E$, необходимо и достаточно, чтобы для любого $E > 0$ существовал такой номер $N$, зависящий только от $\varepsilon$, что для всех $n \geq N, p \in \mathbb{N}$ и для любого $x \in E$ выполнялось неравенство $\mid \sum_{k=n+1}^{n+p} u_k(x)\mid < \varepsilon$.

Эта теорема вытекает из предыдущей, если учесть, что равномерная сходимость ряда определяется как равномерная сходимость последовательности его частичных сумм.

Теорема (признак Вейерштрасса равномерной сходимости ряда). Пусть дан ряд $$ \sum_{n+1}^{\infty} u_n(x) \; \; \; (x \in E). \qquad (16.3)$$ Предположим, что существует числовая последовательность {$a_n$}, такая, что $\mid u_n(x)\mid \leq a_n \; \; \; (n=1,2…)$ для всех $x \in E$, и числовой ряд $\sum_{n=1}^\infty a_n$ сходится. Тогда ряд (16.3) сходится равномерно на $E$.

В силу условия теоремы, имеем $$\mid\sum_{k=n+1}^{n+p} u_k(x)\mid \leq \sum_{k=n+1}^{n+p} a_k \; \; \; (x \in E).$$ Так как ряд $\sum_{n=1}^\infty a_n$ сходится по условию, то, в силу критерия Коши для числовых рядов, для любого $\varepsilon > 0$ найдется такой номер $N$, что для всех $n \geq N$ и для любого $p \in \mathbb{N}$ справедливо неравенство $\sum_{k=n+1}^{n+p} a_k < \varepsilon$. Но тогда и неравенство $\mid\sum_{k=n+1}^{n+p} u_k(x) \mid < \varepsilon$ будет выполненным для всех $x \in E$, т.е. выполнено условие критерия Коши равномерной сходимости функционального ряда, в силу которого ряд (16.3) сходится равномерно на $E$.

Замечание 1. Признак Вейерштрасса является лишь достаточным условием равномерной сходимости функционального ряда. В самом деле, рассмотренный выше пример 3 ряда $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2+n}$ показывает, что этот ряд хотя и сходится равномерно на $\mathbb{R}$, но оценить сверху его слагаемые можно лишь слагаемыми расходящегося числового ряда $\sum_{n=1}^{\infty} \frac{1}{n}$

Замечание 2. Признак Вейерштрасса дает достаточное условие не только равномерной, но и абсолютной сходимости ряда. Это сразу следует из неравенства $$\sum_{k=n+1}^{n+p} \mid u_k(x)\mid \leq \sum_{k=n+1}^{n+p} a_k \; \; \; (x \in E).$$

Замечание 3. Признак Вейерштрасса заключается в том, что из сходимости ряда $\sum_{n=1}^{\infty} a_n $, где $a_n = \sup_{x \in E}\mid u_n(x)\mid$, следует равномерная (и абсолютная) сходимость ряда $\sum_{n=1}^\infty u_{n}(x)$ на множестве $E$.

Пример 4. Рассмотрим ряд $\sum_{n=1}^\infty \frac{x}{1+n^4x^2}$ на $\mathbb{R}$. Используя очевидное неравенство $2\mid\!\! a\mid \leq 1 + a^2$, находим мажорантный числовой ряд $$\mid \frac{x}{1+n^4x^2}\mid \leq \frac{1}{n^2} \frac{\mid n^2x\mid}{1+(n^2x)^2} \leq \frac{1}{2}\frac{1}{n^2}.$$ Поскольку числовой ряд $\sum_{n=1}^\infty \frac{1}{2}\frac{1}{n^2}$ сходится, то исходный функциональный ряд сходится равномерно на $\mathbb{R}$.

Пример 5. Ряд $\sum_{n=1}^\infty \frac{\cos {nx}}{n^2}$ сходится равномерно на $\mathbb{R}$, поскольку $\mid \frac{\cos {nx}}{n^2}\mid \leq \frac{1}{n^2}$ и числовой ряд $\sum_{n=1}^\infty \frac{1}{n^2}$ сходится.

Теорема(признак Абеля равномерной сходимости) Пусть на множестве $E$ заданы две функциональные последовательности {$a_n(x)$} и {$b_n(x)$}, такие, что при каждом $x \in E$ числовая последовательность {$a_n(x)$} монотонна, функции $a_n(x)$ ограничены в совокупности, т.е. существует такое $M$, что $\mid a_n(x)\mid \leq M \;\;\; (x \in E, n = 1,2,…)$, а ряд $\sum_{n=1}^\infty b_n(x)$ сходится равномерно на $E$. Тогда ряд $\sum_{n=1}^\infty a_n(x) b_n(x)$ сходится равномерно на $E$.

Теорема(признак Дирихле равномерной сходимости). Пусть на множестве $E$ заданы две последовательности функций {$a_n(x)$} и {$b_n(x)$}, такие, что при каждом $x \in E$ числовая последовательность {$a_n(x)$} монотонна, функциональная последовательность {$a_n(x)$} равномерно сходится к нулю на $E$, а частичные суммы ряда $\sum_{n=1}^\infty b_n(x)$ ограничены в совокупности на $E$, т.е. существует такое число $M$, что $\mid\sum_{k=1}^n b_k(x)\mid \leq M (x \in E, n = 1,2,…)$. Тогда ряд $\sum_{n=1}^\infty a_n(x) b_n(x)$ сходится равномерно на $E$.

Доказательства признаков Абеля и Дирихле легко провести, основываясь на критерии Коши и применяя преобразование Абеля(точно так же, как это было сделано при доказательстве признаков Абеля и Дирихле сходимости числовых рядов). Рекомендуется провести эти доказательства самостоятельно.

Пример 6. Рассмотрим ряды вида $\sum_{n=1}^\infty a_n(x) \cos nx $ и $\sum_{n=1}^\infty a_n(x) \sin nx$, где последовательность чисел $a_n$ монотонно стремится к нулю. К ряду $\sum_{n=1}^\infty a_n(x) \cos nx $ применим признак Дирихле. Для этого рассмотрим суммы $S_n(x)=\sum_{k=1}^n \cos kx$. Имеем $$2\sin \frac{x}{2} S_n(x) =\sum_{k=1}^n 2\sin \frac{x}{2} \cos kx=$$ $$=\sin \frac{3x}{2} — \sin \frac{x}{2} + \sin \frac{5x}{2} — \sin \frac{3x}{2} + … + \sin (n+ \frac{1}{2})x — \sin (n — \frac{1}{2})x =$$ $$= \sin (n+ \frac{1}{2})x — \sin \frac{x}{2}.$$ Поэтому $$S_n(x) = \frac{\sin (n + \frac{1}{2})x}{2\sin \frac{x}{2}} — \frac{1}{2} \;\;\; (0 < x <2\pi), \;\;\;\; \mid S_n(x)\mid \leq \frac{1}{2} + \frac{1}{2\mid \sin \frac{x}{2}\mid}.$$ Если $x \rightarrow 0$, то $S_n(x) \rightarrow n$, так что в окрестности нуля нарушается равномерная ограниченность сумм $S_n(x)$. Если же $\delta \leq x \leq 2\pi — \delta$, где $0 < \delta < \pi$, то $\mid S_n(x)\mid \leq \frac{1}{2} + \frac{1}{2 \sin \frac{\delta}{2}}$ и поэтому $\left[ \delta, 2\pi — \delta\right]$ выполнены все условия признака Дирихле, в силу которого ряд $\sum_{n=1}^\infty a_n \cos {nx}$ сходится равномерно на $\left[ \delta, 2\pi — \delta\right]$. На всем интервале $(0,2\pi)$ признак Дирихле неприменим, но это еще не означает, что ряд сходится неравномерно, поскольку признак Дирихле — лишь достаточное условие равномерной сходимости ряда.

Покажите самостоятельно, что ряд $\sum_{n=1}^\infty a_n \sin {nx}$, где последовательность {$a_n$} монотонно убывает к нулю, сходится равномерно на $\left[ \delta, 2\pi — \delta\right]$, где произвольное $0 < \delta < \pi$. Для этого полезно использовать равенство $$ \sum_{k=1}^n \sin kx = \frac{1}{2 \sin \frac{x}{2}} \sum_{k=1}^n 2 \sin \frac{x}{2} \sin kx = $$ $$ = \frac{1}{2 \sin \frac{x}{2}} \sum_{k=1}^n [\cos (k — \frac{1}{2})x — \cos (k + \frac{1}{2})x] = $$ $$ =\frac{1}{2 \sin \frac{x}{2}} [\cos \frac{x}{2} — \cos(n+\frac{1}{2})x] \;\;\; (0 < x < 2\pi)$$ и применить признак Дирихле.

Примеры решений задач

  1. Исследовать на равномерную сходимость на интервале $(-\infty, +\infty)$ ряд $\sum_{n=1}^{\infty} \frac{nx}{1+n^5x^2}$.
Решение

Удобно применить признак Вейерштрасса, так как несложно подобрать мажоранту для ряда. Найдем максимум общего члена ряда: $$\frac{\text{d}}{\text{d}x}(\frac{nx}{1+n^5x^2})= n\frac{1-x^2n^5}{(1+x^2n^5)^2} = 0 \Rightarrow x_0 = \frac{1}{n^{\frac{5}{2}}}.$$ Следовательно, $$\mid\frac{nx}{1+n^5x^2}\mid \leq \frac{1}{2n^{\frac{3}{2}}}.$$ Мажорирующий ряд $\sum_{n=1}^\infty \frac{1}{2n^{\frac{3}{2}}}$ сходится. Поэтому исходный ряд сходится равномерно.

[свернуть]

Исследовать на равномерную сходимость на отрезке  $[0,2\pi]$ ряд $\sum_{n=1}^{+\infty} = \frac{\sin nx}{n}$ .

Решение

На данном отрезке частичные суммы вспомогательного ряда не будут ограничены. Применим критерий Коши. Выберем $m=2n, x_0 = \frac{1}{n}$, тогда $$ \mid \frac{\sin \frac{n+1}{n}}{n+1} + … + \frac{\sin 2}{2n}\mid \geq \frac{\sin 1}{n+1} + … + \frac{\sin 1}{2n} \geq \frac{1}{2}\sin 1 = \varepsilon_0.$$ Для ряда выполнился критерий Коши, следовательно, ряд не сходится равномерно.

[свернуть]

Равномерная сходимость

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Список литературы


Тер-Крикоров А.М., Шабунин М.И. Курс Математического Анализа. 1997; с исправлениями 2001. ФИЗМАТЛИТ, 2001, стр.  384 — 407.

В.И.Коляда, А.А.Кореновский. Курс лекций по математическому анализу Т.2. Одесса, «Астропринт», 2010, стр. 32-41.

Г. М. Фихтенгольц «Курс дифференциального и интегрального исчисления» ФИЗМАТЛИТ, 1964 т.2, стр. 376-386.

18.1.1 Несобственные интегралы I рода (интегралы по неограниченным промежуткам)

Пусть функция $f$ задана на промежутке $[a, +\infty)$, где $a \in R$, и интегрируема по Риману на каждом отрезке $[a, \xi)$, где $a \lt \xi \lt +\infty$. Выражение $\int_a^{+\infty} f(x) dx$ называют несобственным интегралом I рода. Если существует $\lim\limits_{\xi\to +\infty}\int_a^\xi f(x) dx$ то этот несобственный интеграл называют сходящимся, а его значение полагают равным:
$$\int_{a}^{\infty}f(x)dx=\lim_{\xi \to +\infty}\int_{a}^{\xi}f(x)dx.$$
Если же не существует конечного предела, то несобственный интеграл называют расходящимся.

Аналогично определяется несобственный интеграл:
$$\int_{-\infty}^{a}f(x)dx = \lim_{\eta\to -\infty}\int_{\eta}^{a}f(x)dx.$$

Пусть теперь функция $f$ задана на всей действительной прямой и интегрируема по Риману на любом отрезке $\left[\eta, \xi\right]$, где $ -\infty \lt \eta \lt \xi \lt +\infty.$
Если существует конечный двойной предел $\lim\limits_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\int_\eta^\xi f(x) dx$,то несобственный интеграл $\int_{-\infty}^{+\infty} f(x) dx$ называется сходящимся, а его значение полагают равным $$\int_{-\infty}^{+\infty}f(x)dx = \lim_{\substack{\xi\to +\infty\\ \eta\to-\infty}}\int_{\eta}^{\xi}f(x)dx.$$

Утверждение. Сходимость интеграла $\int_{-\infty}^{+\infty}f(x)dx$ равносильна тому, что сходятся оба интеграла $\int_{a}^{+\infty}f(x)dx$ и $\int_{-\infty}^{a}f(x)dx$, причем имеет место равенство $$\int_{-\infty}^{+\infty}f(x)dx = \int_{-\infty}^{a}f(x)dx + \int_{a}^{+\infty}f(x)dx$$
где a – произвольное действительное число.

Пусть при некотором $a \in R$ интегралы $\int_{a}^{+\infty}f(x)dx$ и $\int_{-\infty}^{a}f(x)dx$ сходятся. Тогда для $-\infty \lt \eta \lt \xi \lt +\infty$ будем иметь
$$\int_{\eta}^{\xi}f(x)dx = \int_{\eta}^{a}f(x)dx + \int_{a}^{\xi}f(x)dx$$
Отсюда, переходя к пределам при $\xi → +\infty$ и $\eta → -\infty$, получаем
$$\lim_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\int_{\eta}^{\xi}f(x)dx = \lim_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\int_{\eta}^{a}f(x)dx + \lim_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\int_{a}^{\xi}f(x)dx=\\
= \int_{-\infty}^{a}f(x)dx + \int_{a}^{+\infty}f(x)dx$$
т. е. интеграл $\int_{-\infty}^{+\infty}f(x)dx$ сходится и для него справедливо равенство $\int_{-\infty}^{+\infty}f(x)dx = \int_{-\infty}^{a}f(x)dx + \int_{a}^{+\infty}f(x)dx$.

Для доказательства обратного утверждения зафиксируем произвольное $a \in R$ и предположим, что существует
$$\int_{-\infty}^{+\infty}f(x)dx=\lim_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\int_{\eta}^{\xi}f(x)dx.$$
Тогда, в силу критерия Коши существования двойного предела, отсюда
следует, что для любого $ \eps\gt 0$ найдется такое $A$, что для любых $\xi^{\prime}, \xi^{\prime\prime} \gt A$ и для любых $\eta^{\prime},\eta^{\prime\prime}\lt −A$ справедливо неравенство
$$\left|\displaystyle\int_{\eta^{\prime}}^{\xi^{\prime}}f(x)dx — \int_{\eta^{\prime\prime}}^{\xi^{\prime\prime}}f(x)dx\right|\lt \eps $$
Зафиксируем $\eps\gt 0$ и найдем такое $A$. Можем считать, что $A\gt|a|$. Выберем $\eta=\eta^{\prime}=\eta^{\prime\prime}\lt −A$ и $\xi^{\prime}, \xi^{\prime\prime}\gt A$. Тогда получим
$$\left|\displaystyle\int_{\xi^{\prime}}^{\xi^{\prime\prime}}f(x)dx\right| = \left|\displaystyle\int_{\eta}^{\xi^{\prime}}f(x)dx — \int_{\eta}^{\xi^{\prime\prime}}f(x)dx\right|\lt \eps, $$
т. е. выполнено условие критерия Коши существования предела
$$\lim_{\xi\to +\infty}\int_{a}^{\xi}f(x)dx.$$
Отсюда следует, что интеграл $\int_{a}^{+\infty}f(x)dx$ сходится. Аналогично получаем, что и интеграл $\int_{-\infty}^{a}f(x)dx$ также сходится. Имеем
$$\int_{-\infty}^{a}f(x)dx + \int_{a}^{+\infty}f(x)dx = \lim_{\eta\to -\infty}\int_{\eta}^{a}f(x)dx + \lim_{\xi\to +\infty}\int_{a}^{\xi}f(x)dx =\\
= \lim_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\left(\displaystyle\int_{\eta}^{a}f(x)dx + \int_{a}^{\xi}f(x)dx\right) = \lim_{\substack{\xi\to +\infty \\ \eta\to-\infty}}\int_{\eta}^{\xi}f(x)dx = \int_{-\infty}^{+\infty}f(x)dx$$ Последний предел существует в силу условия, а выражение справа не
зависит от $a$. Тем самым доказано $\int_{-\infty}^{+\infty}f(x)dx = \int_{-\infty}^{a}f(x)dx + \int_{a}^{+\infty}f(x)dx$ для любого $a \in R$.

Пример 1. Вычислим $$\int_0^{+\infty}\frac{dx}{1+x^2} = \lim_{\xi\to +\infty}\int_{0}^{\xi}\frac{dx}{1+x^2}=\lim_{\xi\to +\infty} {\mathrm {arctg}}\,x\bigg|_0^{\xi} = \lim_{\xi\to +\infty}{\mathrm {arctg}}\,x=\frac{\pi}{2}.$$

Пример 2. Несобственный интеграл $\int_0^{+\infty}\sin x dx.$ расходится. В самом деле, $$\int_0^{\xi}\sin x dx =-\cos x \bigg|_0^{\xi}= 1-cos {\xi} $$ не имеет предела.

Примеры решения задач

Пример 1

Вычислить $\int_0^{+\infty}e^{-px}dx.$

Решение:

$$\int_0^{+\infty}e^{-px}dx= -\frac{1}{p}e^{-px}\bigg|_0^{+\infty}=-\frac{1}{p}\lim_{x\to +\infty}(e^{-px}-1)= \begin{cases}
\frac{1}{p}, \text{если $p \gt 0$;} \\
+\infty, \text{если $p\lt 0$.}
\end{cases}$$ При $p \gt 0 \lim\limits_{x\to +\infty}e^{-px}= \lim\limits_{x\to +\infty}\frac{1}{e^{px}}=0$, так как $e^{px}\to+\infty$ при $x\to+\infty.$ При $p\lt 0 \lim\limits_{x\to +\infty}e^{-px} = +\infty.$

Таким образом, интеграл $\int_0^{+\infty}e^{-px}dx$ сходится при $p \gt 0$ и расходится при $p\lt 0.$

[свернуть]

Пример 2

При каких значениях показателя $\lambda \gt 0$ существует несобственный интеграл $\int_a^{+\infty}\frac{dx}{x^\lambda}, (a\gt 0).$

Решение:

Пусть $\lambda\neq1$, тогда $$\int_a^{\xi}\frac{dx}{x^\lambda}=\frac{1}{1-\lambda}x^{1-\lambda}\bigg|_a^\xi=\frac{1}{1-\lambda} (\xi^{1-\lambda} — a^{1-\lambda}).$$
Это выражение при $\xi\to+\infty$ имеет предел $\infty$ ( $\lambda \lt 1$) или конечное число $\frac{1}{1-\lambda} a^{1-\lambda}$ ($\lambda \gt 1$).

Если $\lambda=1$, имеем $$\int_a^{\xi}\frac{dx}{x}=\ln(x)\bigg|_a^\xi=\ln(\xi)-\ln(a)$$ и при $\xi\to+\infty$ в пределе получается $+\infty$. Таким образом, интеграл $\int_a^{+\infty}\frac{dx}{x^\lambda}$ при $\lambda\gt 1$ сходится (и равен $\frac{1}{1-\lambda} a^{1-\lambda}$), а при $\lambda\leq 1$ расходится.

[свернуть]

Пример 3

Вычислить $\int_{-\infty}^{+\infty}\frac{dx}{1+x^2}.$

Решение:

$$\int_{-\infty}^{+\infty}\frac{dx}{1+x^2}=\lim\limits_{x\to{+\infty}} {\mathrm {arctg}}\,x -\lim\limits_{x\to{-\infty}} {\mathrm {arctg}}\,x = \frac{\pi}{2} -(-\frac{\pi}{2})=\pi.$$

Интеграл $\int_{-\infty}^{+\infty}\frac{dx}{1+x^2}$ сходится и равен $\pi$.

[свернуть]

Несобственные интегралы по неограниченным промежуткам

Для закрепления пройденного материала предлагается пройти тест.

Литература

  1. Коляда В.И.,Кореновский А.А. Курс лекций по математическому анализу / В.И.Коляда.-Одесса: Изд-во «Астропринт», 2010. т.2. -С.102-105.
  2. Каплан И.А. Практические занятия по высшей математике / И.А.Каплан. -Харьков: Изд-во Харьковского университета, 1967. ч.3. -С.760-761.
  3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления/ Г.М.Фихтенгольц -Москва: Изд-во «Наука», 1969. т.2. -С.553.
  4. Лысенко З.М. Конспект лекций по математическому анализу.

18.1.2 Несобственные интегралы II рода (интегралы от неограниченных функций)

Пусть функция $f$ задана на полуинтервале $[a, b)$, где $-\infty\lt a \lt b \lt +\infty$ и интегрируема по Риману на любом отрезке $[a,\xi]$, где $a\lt\xi\lt b$. Если существует конечный предел $\lim\limits_{\xi\to b-0}\int_a^\xi f(x) dx$, то несобственный интеграл второго рода $\int_a^b f(x) dx$ называют сходящимся и полагают $$\int_a^b f(x) dx=\lim\limits_{\xi\to b-0}\int_a^\xi f(x) dx.$$ В противном случае несобственный интеграл называют расходящимся.

Замечание 1. Предполагается, что функция $f$ неограничена в любой левой полуокрестности точки $b$. Действительно, если функция $f$ ограничена на $[a, b)$ и интегрируема на каждом отрезке $[a,\xi]$ при любом $\xi\lt b$, то, используя критерий интегрируемости функции в смысле Римана в терминах колебаний, легко можно показать, что функция $f$ интегрируема по Риману на отрезке $[a, b]$ (в самой точке $b$ функцию можно доопределить произвольным образом и это не влияет ни на свойство функции быть интегрируемой, ни на величину интеграла Римана $\int_a^b f(x) dx)$.

Замечание 2. Если функция $f$ интегрируема по Риману на отрезке $[a, b]$, то, как было установлено ранее, интеграл с переменным верхним пределом $\varphi(\xi)=\int_a^\xi f(x) dx$ является непрерывной на $[a, b]$ функцией. В частности, существует $\lim\limits_{\xi\to b-0}\varphi(\xi)=\int_a^b f(x)dx$. Это означает, что для интегрируемой в смысле Римана функции интеграл в несобственном смысле также существует и их значения совпадают.

Если функция $f$ неограничена в любой левой полуокрестности точки $b$, то эту точку называют особой точкой и говорят, что в точке $b$ функция имеет особенность. Иногда это обозначают так: $\int_a^{(b)} f(x)dx$. Аналогично определяется $\int_{(a)}^b f(x)dx$ с особенностью в точке $a$. Т.е., полагаем
$$\int_{(a)}^b f(x)dx=\int_a^b f(x)dx=\lim\limits_{\eta\to a+0}\int_\eta^b f(x) dx,$$
если предел справа существует. В этом случае интеграл называют сходящимся, в противном случае – расходящимся.

Пример 1. У интеграла $\int_0^1\frac{dx}{\sqrt{1-x^2}}$ имеется особенность в точке $x=0$. Имеем
$$\int_{0}^1 \frac{dx}{\sqrt{1-x^2}}=\lim\limits_{\xi\to {1-0}} \int_{0}^{\xi} \frac{dx}{\sqrt{1-x^2}} = \lim\limits_{\xi\to {1-0}}\arcsin\xi = \arcsin 1=\frac{\pi}{2}.$$

Пример 2. Рассмотрим интеграл $\int_{0}^1\frac{dx}{x^ \alpha}.$ при $\alpha\gt 0$.
Он имеет особенность в точке $x=0$. При $\alpha\neq 1$ имеем: $$ \int_\eta^1 \frac{dx}{x^{\alpha}}=\frac{1}{1-{\alpha}} x^{1-{\alpha}}\bigg|_{\eta}^1=\frac{1}{1-{\alpha}}-\frac{\eta^{1-\alpha}}{1-{\alpha}},$$ а если $\alpha=1$, то $$ \int_{\eta}^1 \frac{dx}{x^{\alpha}}=\ln x\bigg|_\eta^1=\ln\frac{1}{\eta}.$$

Если $\alpha\lt 1$, то существует $$\lim\limits_{\eta \to {0+}}\int_{\eta}^1 \frac{dx}{x^{\alpha}} = \frac{1}{1-\alpha}.$$

Если же $\alpha\geqslant 1$, то предел $\lim\limits_{\eta \to {0+}}\int_{\eta}^1 \frac{dx}{x^{\alpha}}$ не существует. Следовательно, $$ \int_\eta^1 \frac{dx}{x^{\alpha}} = \frac{1}{1-{\alpha}} (\alpha\lt 1)$$
и интеграл расходится при $\alpha\geqslant 1$.

Интеграл с несколькими особенностями определяется как сумма интегралов по таким промежуткам, на каждом из которых имеется лишь одна особенность. При этом интеграл называют сходящимся, если сходятся все
интегралы указанной суммы. Если хотя бы один из них расходится, то и исходный интеграл называют расходящимся.

Пример. Интеграл $\int_{-\infty}^{+\infty}\frac {dx}{\sqrt{x} \sqrt[3]{x-1} \sqrt[4]{x-2}}$ определяется как
$$ \int_{-\infty}^{+\infty}\frac {dx}{\sqrt{x} \sqrt[3]{x-1} \sqrt[4]{x-2}}=\int_{-\infty}^a + \int_a^0 + \int_0^b + \int_b^1 + \int_1^c + \int_c^2 + \int_2^d + \int_d^{+\infty},$$ где $ -\infty \lt a \lt 0 \lt b \lt 1 \lt c \lt 2 \lt d \lt +\infty$.

Примеры решения задач

Пример 1

Вычислить интеграл $\int_{0}^1\frac{dx}{x}.$
Решение:

Для данного интеграла особой точкой является точка $0$. $$\int_{0}^1 \frac{dx}{x}=\lim\limits_{\eta \to 0} \int_{\eta}^1 \frac{dx}{x}=\lim\limits_{\eta\to 0} \ln x \bigg|_{\eta}^1 = +\infty.$$

Интеграл $\int_{0}^1\frac{dx}{x}$ расходится.

[свернуть]

Пример 2

Вычислить интеграл $\int_{-1}^1\frac{dx}{\sqrt{1-x^2}}.$
Решение:

Для данного интеграла особыми точками являются точки $-1$ и $1$. $$\int_{-1}^1\frac{dx}{\sqrt{1-x^2}}=\int_{-1}^0\frac{dx}{\sqrt{1-x^2}}+\int_{0}^1\frac{dx}{\sqrt{1-x^2}}=\frac{\pi}{2}+\frac{\pi}{2}={\pi}$$ (неопределенный интеграл для данной функции равен: $\int {\frac{dx}{\sqrt{1-x^2}}} = {\mathrm {arcsin}}\,x$.

Таким образом, интеграл $\int_{-1}^1\frac{dx}{\sqrt{1-x^2}}$ сходится и равен $\pi$.

[свернуть]

Несобственные интегралы от неограниченных функций

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Литература

  1. Коляда В.И.,Кореновский А.А. Курс лекций по математическому анализу / В.И.Коляда.-Одесса: Изд-во «Астропринт», 2010. ч.2. -С.106-108.
  2. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления / Г.М.Фихтенгольц.-Москва: Изд-во «Наука», 1964. т.2. -С.579.
  3. Кудрявцев Л.Д. Краткий курс математического анализа / Л.Д.Кудрявцев. -Москва: изд-во «Наука», 1989. -С.397.
  4. Лысенко З.М. Конспект лекций по математическому анализу.

13.3 Матрица Якоби

Пусть отображение $f : E \longmapsto \mathbb{R}^m \left(E \subset \mathbb{R}^n \right)$ дифференцируемо в точке $x_0 \in E.$ Это значит, что существует такое линейное отображение $A : \mathbb{R}^n \longmapsto \mathbb{R}^m,$ что выполнимо равенство
$$\displaystyle \lim_{h\to0}\frac{|f\left(x_0 + h \right) -f\left(x_0 \right) -A\left(h \right)|}{|h|} = 0.$$

Определение. Матрица линейного отображения $A$ называется матрицей Якоби отображения $f.$

Матрица линейного отображения имеет вид

$$\begin{pmatrix} a^1_1 & a^1_2 & \ldots & a^1_n \\ a^2_1 & a^2_2 & \ldots & a^2_n & \\ \ldots & \ldots & \ldots & \ldots \\ a^m_1 & a^m_2 & \ldots & a^m_n \end{pmatrix}$$

В этой матрице $i$-я строка состоит из чисел $A^i \left(e_1 \right), \ldots, A^i\left(e_n \right),$ где $A^i \left(i = 1, \ldots, m \right)$ — компоненты линейного отображения $A,$ а $e_j \left(j = 1, \ldots, n \right)$ — базисные векторы в пространстве $\mathbb{R}^n.$

Отображение $A$ можно представить в виде $A = \left(A_1, \ldots, A^m \right),$ где $A^j = df^i\left(x_0 \right)$ линейная форма, которую ранее мы назвали производной компоненты $f^i$ в точке $x_0.$

Ранее мы показывали, что производная действительных функций $f^i$: $E \mapsto \mathbb{R} \left(E \subset \mathbb{R^n} \right)$ в точке $x_0 \in E$ — это линейная форма, компонентами которой являются частные производные функции $f^i$ в точке $x_0$ т.е.

$$df^i\left(x_0 \right) = \left(\frac{\partial f^i}{\partial x^1}\left(x_0 \right),\ldots, \frac{\partial f^i}{\partial x^n}\left(x_0 \right) \right).$$

Значением этой линейной формы на векторе $e_j$ будет

$$df^i\left(x_0 \right)\left(e_j \right) = \frac{\partial f^i}{\partial x^j}\left(x_0 \right).$$

Итак, компоненты матрицы $a^i_j = A^i\left(e_j \right) = df^i\left(x_0 \right)\left(e_j \right) = \frac{\partial f^i}{\partial x^j}\left(x_0 \right).$ Таким образом, матрицу Якоби можно переписать в следующем виде:

$$\begin{pmatrix} \frac{\partial f^1}{\partial x^1}(x_0) & \frac{\partial f^1}{\partial x^2}(x_0) & \ldots & \frac{\partial f^1}{\partial x^n}(x_0) \\ \frac{\partial f^2}{\partial x^1}(x_0) & \frac{\partial f^2}{\partial x^2}(x_0) & \ldots & \frac{\partial f^2}{\partial x^n}(x_0) \\ \dots & \dots & \dots & \dots \\ \frac{\partial f^m}{\partial x^1}(x_0) & \frac{\partial f^m}{\partial x^2}(x_0) & \ldots & \frac{\partial f^m}{\partial x^n}(x_0) \end{pmatrix}.$$

Другими словами, производная отображения $f$ задаётся матрицей Якоби, у которой компонентами являются частные производные все компонент отображения $f$ по всем переменным.

Если $m = n,$ то получаем квадратную матрицу, определитель которой называется определителем Якоби или якобианом $Jf\left(x_0 \right)$и обозначается

$$Jf(x) = \frac{\partial (f_1, \ldots, f_n)}{\partial (x_1, \dots, x_n)} = \begin{vmatrix} \frac{\partial f^1}{\partial x^1}(x_0) & \frac{\partial f^1}{\partial x^2}(x_0) & \ldots & \frac{\partial f^1}{\partial x^n}(x_0) \\ \frac{\partial f^2}{\partial x_1}(x_0) & \frac{\partial f^2}{\partial x^2}(x_0) & \ldots & \frac{\partial f^2}{\partial x^n}(x_0) \\ \dots & \dots & \dots & \dots \\ \frac{\partial f^n}{\partial x^1}(x_0) & \frac{\partial f^n}{\partial x^2}(x_0) & \ldots & \frac{\partial f^n}{\partial x^n}(x_0) \end{vmatrix}.$$

Замечание. Если все частные производные непрерывны, то и сам определитель Якоби является непрерывной функцией. Это очевидно.

Пример 1.Являются ли функции функционально зависимыми?

\begin{cases} f_1 = x_1 + x_2 + x_3 -1; \\ f_2 = x_1x_2 + x_1x_3 + x_2x_3 -2; \\ f_3 = x^2_1 + x^2_2 + x^2_3 + 3. \end{cases}

Решение.

$\frac{D(f_1,f_2,f_3)}{D(x_1,x_2,x_3)} = \begin{vmatrix} \\ 1 & 1 & 1 \\ x_2 + x_3 & x_1 + x_3 & x_1 + x_2 \\ 2x_1 & 2x_2 & 2x_3 \end{vmatrix} = $

$=\begin{vmatrix} \\ 1 & 1 & 1 \\ x_1 + x_2 + x_3 & x_1 + x_2 + x_3 & x_1 + x_2 + x_3 \\ 2x_1 & 2x_2 & 2x_3 \end{vmatrix} \equiv 0$

Так как якобиан равен нулю, то эти функции функционально зависимы. Несложно найти эту зависимость:

$\left(f_1 + 1 \right)^2 -2\left(f_2 + 2 \right) -\left(f_3 -3\right) = 0.$

Пример 2. Для линейных функций $f_1 = a_{11} x_1 + \ldots + a_{1n} x_n -b_1, \ldots , f_m = a_{m1} x_1 + a_{mn} x_n -b_m$ матрица Якоби будет матрицей коэффициентов при переменных:

Решение.

\begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{pmatrix}

Если мы хотим разрешить систему $f_1 = 0,f_2 = 0, \ldots, f_n = 0$ относительно $x_1, \ldots, x_n,$ то для случая $m = n$ определитель Якоби

\begin{vmatrix} a_{11} & \ldots & a_{1n} \\ \ldots & \ldots & \ldots \\ a_{n1} & \ldots & a_{nn}\end{vmatrix}

есть определитель системы и для её разрешимости он должен быть отличен от нуля.

Пример 3. Переход элементарной площади $dS = dx\,dy$ от декартовых координат $ \left( x,y \right)$ к полярным координатам $ \left( r,\phi \right)$:

Решение.

$\begin{cases} x = r\,\cos(\phi); \\ y = r\,\sin(\phi). \end{cases}$

Матрица Якоби имеет вид:

$J(r,\phi) = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} \end{pmatrix} = \begin{pmatrix} \cos(\phi) & -r\,\sin(\phi) \\ \sin(\phi) & r\,\cos(\phi) \end{pmatrix}.$

Якобиан перехода от декартовых координат к полярным есть определитель матрицы Якоби:

$J(r,\phi) = \det I(r,\phi) = \det\begin{pmatrix} \cos(\phi) & -r\,\sin(\phi) \\ \sin(\phi) & r\,\cos(\phi) \end{pmatrix}.$

Таким образом, элемент площади при переходе от декартовых к полярным координатам будет выглядеть следующим образом:

$dS = dx\,dy = J\left(r,\phi \right) dr\,d\phi = r\,dr\,d\phi.$

Пример 4.Переход элементарного объёма $dV$=$dx$ $dy$ $dz$ от декартовых координат $\left(x,y,z \right)$ к сферическим координатам $\left(r,\theta,\phi \right)$ :

Решение.

$\begin{cases}x = r\,\sin(\theta)\,\cos(\phi); \\ y = r\,\sin(\theta)\,\sin(\phi); \\ z = r\,\cos(\theta).\end{cases}$

Матрица Якоби имеет следующий вид: $I(r,\theta,\phi) = \begin{pmatrix} \frac{\partial x}{\partial r}   \frac{\partial x}{\partial \theta}   \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r}   \frac{\partial y}{\partial \theta}   \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r}   \frac{\partial z}{\partial \theta}   \frac{\partial z}{\partial \phi} \end{pmatrix} =$

$= \begin{pmatrix} \sin(\theta) \cos(\phi) & r\,\cos(\theta) \cos(\phi) &  -r\,\sin(\theta)\,\sin(\phi) \\ \sin(\theta)\,\sin(\phi) &  r\,\cos(\theta)\,\sin(\phi) & r\,\sin(\theta)\,\cos(\phi) \\ \cos(\theta) & -r\,\sin(\theta) & 0 \end{pmatrix}.$

А якобиан перехода от декартовых координат к сферическим – есть определитель матрицы Якоби:

$J\left(r,\theta,\phi \right) = \det I\left(r,\theta,\phi \right)$ =

= $\begin{vmatrix} \sin(\theta)\,\cos(\phi) & r\,\cos(\theta)\,\cos(\phi) &  -r\,\sin(\theta)\,\sin(\phi) \\ \sin(\theta)\,\sin(\phi) &  r\,\cos(\theta)\,\sin(\phi) & r\,\sin(\theta)\, \cos(\phi) \\ \cos(\theta) & -r\,\sin(\theta) & 0 \end{vmatrix} = r^2\sin(\theta).$

Таким образом, элемент объёма при переходе от декартовых к сферическим координатам будет выглядеть следующим образом:

$dV = dx\,dy\,dz = J\left(r,\theta,\phi \right) dr\,d\theta\,d\phi = r^2\,\sin(\theta)\,dr\,d\theta \,d\phi.$

Матрица Якоби

Для закрепления пройденного материала предлагается пройти тест.

Список использованной литературы

  1. Коляда В.И., Кореновский А.А. Курс лекций по математическому анализу.-Одесса : Астропринт, 2009. стр.309-311
  2. Демидович Б.П. «Сборник задач и упражнений по математическому анализу» 13-е издание, 1997 М.: Изд-во Моск. ун-та, ЧеРо. №3990.
  3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: Том 1 / Г.М. Фихтенгольц – М.: Книга по Требованию, 2013. стр.455-456.

5.8.1 Условия постоянства и монотонности функции

Условие постоянства. Функция f называется
тождественно постоянной на интервале I, если для любых двух точек $x’$,$x^{\prime\prime}$ справедливо равенство $f(x’)=f(x^{\prime\prime})$

Если функция постоянна на интервале $I$, то она дифференцируема в каждой точке этого интервала и ее производная равна нулю. Обратно, если в каждой точке некоторого интервала $I$ производная функции $f$ равна нулю, то $f$ постоянна на $I$. Последнее утверждение нами было получено как следствие из теоремы Лагранжа. Таким образом, функция $f$ постоянна на интервале $I$ тогда и только тогда, когда $f'(x)=0$  для любого $x\in I$.

Упражнение. Пусть непрерывная на интервале $I$ функция $f$ такова, что $f'(x)=0$ для всех $x\in I$ , за исключением, быть может, конечного числа точек. Докажите что $f$ постоянна на $I$.

Условия монотонности. Функция $f$ называется монотонно возрастающей (убывающей) на интервале $I$, если для любых $x,y\in I$ из условия $x$ < $y$ следует, что $f(x)$ ≤ $f(y)$.$ $ Если из условия $x$ < $y$ следует, что $f(x)$ < $f(y)$,то $f$ называется строго возрастающей. Если из $x$ <  $y$ следует $f(x)$ ≥ $f(y)$, то $f$ называется убывающей (невозрастающей), а если из $x$ < $y$ следует $f(x)$ > $f(y)$ , то $f$ называется строго убывающей.

Теорема 1. Пусть функция $f$ дифференцируема на интервале $I$. Для того, чтобы $f$ была возрастающей на $I$, необходимо и достаточно, чтобы для всех $x\in I$ выполнялось неравенство $f'(x) ≥ 0$.

Доказательство. Если $f$ возрастает то $\frac{f(x+h)-f(x)}h$ ≥ 0 для любого h > 0 и ,следовательно, $f'(x)$=limh→0+ $\frac{f(x+h)-f(x)}h ≥ 0$.
Обратно, если $x$ < $y$, то, по формуле конечных приращений(теореме Лагранжа), $f(y)-f(x)=f'(ξ)(y-x) ≥ 0$,где $x$< ξ < $y$ и $f'(ξ) ≥ 0$ по условию.

Замечание. Если $f$ непрерывна на отрезке $[a,b]$, дифференцируема на интервале $\lbrack a,b\rbrack$ и $f'(x) ≥ 0$ для всех $x\in(a,b)$, то $f $ монотонно возрастает на $\lbrack a,b\rbrack$ . Доказательство этого утверждения аналогично доказательству теоремы 1 и основано на применении теоремы Лагранжа.

Аналогично теореме 1 получаем что справедлива

Теорема 1a. Для того, чтобы дифференцируемая на интервале $I$ функция $f$ была убывающей, необходимо и достаточно, чтобы для всех $x\in I$ выполнялось неравенство $f'(x) ≤ 0 $.

Достаточное условие строгой монотонности дает:

Теорема 2. $ $ Пусть функция $f$ дифференцируема на интервале $I$ и $f'(x) > 0 $ для всех $x\in I$. Тогда $f$ строго возрастает на $I$.

По теореме Лагранжа, для $x < y$ имеем
$$f(y)-f(x)=f'(\xi)(x-y).$$

Замечание. Обратное утверждение неверно. Из строгой монотонности функции $f$ не следует, что $f'(x) > 0$. Например, функция  $f(x)=x^{3}$ строго возрастает на $(-1,1)$, но $f'(0)=0$.

Теорема 2 а. Пусть функция $f$ дифференцируема на интервале $I$ и $f'(x) < 0$ для всех $x\in I$. Тогда $f$ строго убывает на $I$.

Доказательство этой теоремы аналогично доказательству теоремы 2.

Пример. $ $ Докажем, что функция $f(x)=x-sin(x)$ строго возрастает на $(-\infty,+\infty)$. Имеем $f'(x)=1-cos(x) ≥ 0$ для всех $x\in(-\infty,+\infty)$. Отсюда уже следует, что $f$ возрастает на $(-\infty,+\infty)$. Осталось показать, что $f$ строго возрастает.Пусть $x < y$. Тогда
$$f(y)-f(x)=y-\sin\left(y\right)-x+\sin\left(x\right)=$$
$$=y-x-2\sin\left(\frac{y-x}2\right)\cos\left(\frac{y+x}2\right)\geq y-x-2\left|\sin\left(\frac{y-x}2\right)\right|$$

Так как $\left|\sin\left(t\right)\right|<\left|t\right|$ для всех $t\neq0$,то $$f(y)-f(x)\geq y-x-2\left|\sin\left(\frac{y-x}2\right)\right|>y-x-2\frac{y-x}2=0$$,
т.е. $f(y) > f(x)$.
Аналогично тому, как была доказана теорема 2 , легко показать что справедлива

Теорема 3. Пусть функция $f$ непрерывна на $\lbrack a,b\rbrack$, дифференцируема на $(a,b)$ и $f'(x) > 0$ для всех $x\in(a,b)$. Тогда $f$ строго возрастает на $\lbrack a,b\rbrack$.

Из этой теоремы легко получается

Следствие. $ $ Пусть непрерывная на интервале $I$ функция $f$ такова, что $f'(x) > 0$ всюду, за исключением конечного числа точек. Тогда $f$ строго возрастает на $\lbrack a,b\rbrack$.

Пример. $ $ Для функции $f(x)=\sin\left(\frac1x\right)-\frac1x$ ($x > 0$) имеем
$f'(x)=\cos\left(\frac1x\right)(-\frac1{x^2})-(-\frac1{x^2})=\frac1{x^2}(1-\cos\left(\frac1x\right))\geq0$

Значит, $f$ возрастает. Покажем, что $f$ строго возрастает. Пусть $x < y$. Тогда на отрезке $\lbrack x,y\rbrack$ не более, чем в конечном числе точек производная $f’$ обращается в нуль. В силу следствия, $f(x) < f(y)$.

Некоторые неравенства.

$$1.\frac2{\mathrm\pi}x<\sin\left(x\right)<x\;(0<x<\frac{\mathrm\pi}2)$$

Правое неравенство $\sin\left(x\right)<x\;(x>0)$ было доказано ранее. Докажем левое. Ранее было доказано что, $x<\tan\left(x\right)\;\;\;(0<x<\frac{\mathrm\pi}2)$. Поэтому для функции $\varphi(x)=\frac{\sin\left(x\right)}x$ при $0<x<\frac{\mathrm\pi}2$ имеем $\varphi(\frac{\mathrm\pi}2)=\frac2{\mathrm\pi}$,$\varphi'(x)=\frac{x\cos\left(x-\sin\left(x\right)\right)}{x^2}=\frac{\cos\left(x\right)}{x^2}\;(x-\tan\left(x\right))<0$. Значит функция $\varphi$ строго убывает на $\lbrack0,\frac{\mathrm\pi}2\rbrack$, т.е $\varphi(x)>\varphi(\frac{\mathrm\pi}2)=\frac2{\mathrm\pi}$, а это равносильно тому, что $\frac2{\mathrm\pi}x<\sin\left(x\right)$.

$$2.(1+x)^\alpha>1+\alpha x\;(x>0,\alpha>1)$$

Положим $\varphi(x)=\;(1+x)^\alpha-1-\alpha x$.$ $ Тогда $\varphi'(x)=\alpha\lbrack(1+x)^{\alpha-1}-1\rbrack>0$.$ $ Значит, функция $\varphi$ строго возрастает, и поэтому $\varphi(x)>\varphi(0)=0$ при $x>0$.$ $ Это равносильно требуемому неравенству.

$$3.(x+y)^p>x^p+y^p\;(0<p<1,\;x,y>0)$$

Требуемое неравенство равносильно такому $(1+t)^p<1+t^p$,где $t=\frac xy>0$. Положим $\varphi(t)=(1+t)^p$. Тогда $\varphi(0)=0$ и $\varphi'(t)=p\lbrack(1+t)^{p-1}-t^{p-1}\rbrack<0$. Значит ,функция $\varphi$ строго убывает.

$$4.(x+y)^{p}>x^{p}+y^{p}(p>1,x,y>0)$$

Доказательство этого неравенства аналогично доказательству предыдущего.

Примеры решения задач

Найти интервалы возрастания и убывания функции:

$1.f(x)=x^3-30x^2+225x+1$

Решение

Данная функция всюду дифференцируема,причем
$$f'(x)=3x^2-60x+225=3(x-5)(x-15)$$

Так как f'(x) > 0 при $x\in(-\infty,5)$ и $x\in(15,+\infty)$ и $f'(x) < 0$ при $x\in(5,15)$, то на интервалах $(-\infty,5)$ и $(15,+\infty)$ функция строго возрастает, а на интервале $(5,15)$ строго убывает.

$2.f(x)=\left\{\begin{array}{l}\frac1e,\;\;если\;\;x\;<\;e,\\\frac{\ln\left(x\right)}x,\;\;если\;\;x\;\;\geq\;e;\end{array}\right.$

Решение

Функция дифференцируема на всей числовой прямой, причем

$$f(x)=\left\{\begin{array}{l}0,\;\;если\;\;x<e,\\\frac{1-\ln\left(x\right)}{x^2},\;\;если\;x\geq e.\end{array}\right.$$

Так как $f'(x) ≤ 0$ при всех x, то данная функция является невозрастающей на всей числовой оси. На интервале $(-\infty,e)$ она постоянна, на интервале $(e,+\infty)$ строго убывает.

$3.f(x)=\cos\left(\frac{\mathrm\pi}x\right)$

Решение

Данная функция является четной, поэтому достаточно найти интервалы монотонности при $x > 0$. Решая при $x > 0$ неравенство

$$f'(x)=\frac{\mathrm\pi}{x^2}\sin\left(\frac{\mathrm\pi}x\right)>0,$$

получаем

$$\;0<\frac{\mathrm\pi}x<x\;\;или\;\;2\mathrm{πk}<\frac{\mathrm\pi}{\mathrm x}<\mathrm\pi+2\mathrm{πk},\;\mathrm k\in\mathbb{N} $$ откуда $$x>1\;\;или\;\;\frac1{2k+1}<x<\frac1{2k},\;k\in\mathbb{N}.$$

Таким образом, на интервалах $(1,+\infty)$ и $(\frac1{2k+1},\frac1{2k}),\;k\in\mathbb{N}$ функция строго возрастает. На интервалах $(\frac1{2k},\frac1{2k-1}),\;k\in\mathbb{N}$ ,очевидно, справедливо неравенство $f'(x)<0$, и поэтому на этих интервалах функция строго убывает. Если $x<0$, то, используя четность функции, получаем, что на интервалах $(-\frac1{2k},-\frac1{2k-1}),\;k\in\mathbb{N}$, функция строго возрастает, а на интервалах $(-\infty,-1)$ и $(-\frac1{2k-1},-\frac1{2k}),\;k\in\mathbb{N}$, строго убывает.

 

Условия постоянства и монотонности

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Условия постоянства и монотонности функции».

Таблица лучших: Условия постоянства и монотонности

максимум из 13 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных