На какое наибольшее число частей могут разбить плоскость [latex]Oxy[/latex] графики [latex]n[/latex] квадратных трехчленов вида [latex]y=ax^{2}+bx+c (n=1, 2, 3, …)[/latex]?
Ответ: [latex]n^{2}+1[/latex].
Решение
Докажем по индукции, что число частей не превосходит [latex]n^{2}+1[/latex]. Для [latex]n=1[/latex] это ясно: парабола делит плоскость на две части.
Пусть доказано, что [latex]n-1[/latex] графиков делят плоскость не более, чем на [latex](n-1)^{2}+1[/latex] частей. Проведем последний, [latex]n[/latex]-й график. Он пересекается с каждым из [latex]n-1[/latex] предыдущих максимум в двух точках, т.е. он будет разбит не более чем на [latex]2(n-1)+1=2n+1[/latex] кусков (включая два крайних, уходящих в бесконечность). Каждый из этих кусков параболы делит одну из имеющихся частей плоскости на две. Таким образом, при проведении последней параболы число частей увеличится не более чем на [latex]2n+1[/latex], т.е. не превзойдет [latex](n-1)^{2}+1+2n+1=n^{2}+1[/latex].
Легко строится пример, когда все графики попарно пересекаются в двух точках (см. рисунок) — при этом получится максимальное число частей, указанное в ответе.
Точно такие же образом можно подсчитать максимальное число частей, на которые делят плоскость [latex]n[/latex] прямых, [latex]n[/latex] окружностей и т.п.
Интегрирование функций вида $latex R(x,(\frac{ax+b}{cx+d})^{r_{1}},…,(\frac{ax+b}{cx+d})^{r_{n}})&s=2$
Интегралы типа $latex \int R(x,(\frac{ax+b}{cx+d})^{r_{1}},…,(\frac{ax+b}{cx+d})^{r_{n}}),$
где a, b, c, d — действительные числа, $latex r_{k}\in \mathbb{Q}(k=\overline{1,n})$, сводятся к интегралам от рациональной функции путем подстановки
$latex \frac {ax+b}{cx+d}=t^{p},$
где p — наименьшее общее кратное знаменателей чисел $latex r_{1},r_{2},…r_{n}.$
Действительно, из подстановки $latex \frac{ax+b}{cx+d}=t^{p}$ следует, что $latex x=\frac{b-dt^{p}}{ct^{p}-a}$ и $latex dx=-\frac {dpt^{p-1}(ct^{p}-a)-(b-dt^{p})cpt^{p-1}}{(ct^{p}-a)^{2}}dt$, т.е. x и dx выражаются через рациональные функции от t. При этом и каждая степень дроби $latex \frac{ax+b}{cx+d}$ выражается через рациональную функцию от t.
2) Найти интеграл $latex I=\int\frac{dx}{\sqrt[3]{(x+2)^{2}}-\sqrt{x+2}}.$ Наименьшее общее кратное знаменателей дробей $latex \frac{2}{3}$ и $latex \frac{1}{2}$ есть 6. Сделав замену
где a и b — любые константы, а показатели степеней m, n и p — рациональные числа. Изучим вопрос об интегрируемости в элементарных функциях дифференциальных биномов.
Рассмотрим три случая , когда интеграл от дифференциального бинома допускает рационализирующую подстановку.
1. Первый случай соответствует целому p. Дифференциальный бином представляет собой дробно-линейную иррациональность вида [latex] R (x,\sqrt[r]{x}) dx [/latex], где r — наименьшее общее кратное знаменателей рациональных чисел m и n. Стало быть, интеграл от дифференциального бинома в этом случае рационализируется подстановкой [latex] t=\sqrt[r]{x} [/latex].
2.Второму случаю соответствует целое число [latex] \frac{m+1}{n} [/latex]. Сделаем подстановку
[latex] z = x^{n} [/latex] и положим для краткости [latex] \frac{m+1}{n}-1=q [/latex], получим
Подынтегральная функция в правой части является дробно-линейной иррациональностью следующего вида вида [latex] R (z,\sqrt[s]{a+bz}) [/latex], где s — знаменатель рационального числа p.
Таким образом, для второго случая дифференциальный бином рационализируется подстановкой
3. Третьему случаю соответствует целому число [latex] (\frac{m+1}{n}+p) [/latex]. Подынтегральная функция в правой части является дробно-линиейной иррациональностью вида [latex] R (z,\sqrt[s]{\frac{a+bz}{z}}) [/latex], так что интеграл от дифференциального бинома рационализируется подстановкой вида
В середине 19-го века П.Л.Чебышев доказал, что указанными выше тремя случаями исчерпываются все случаи, когда дифференциальный бином интегрируется в элементарных функциях. (Мемуар 1853 года «Об интегрировании иррациональных дифференциалов»).
Примеры
1)Вычислить интеграл [latex] I=\int \frac{ \sqrt{x}dx}{ (1+\sqrt[3]{x})^{2}} = \int x^{\frac {1} {2}} (1+x^{\frac{1}{3}})^{-2} [/latex]. Здесь [latex] m=\frac{1}{2}, n=\frac{1}{3}, p=-2 [/latex]. Так как p — целое, значит используем подстановку из первого случая
2) Вычислить интеграл [latex] I = \int \frac{x}{\sqrt{1+\sqrt[3]{x^{2}}}} dx[/latex]. Здесь [latex] m = 1, n = \frac{2}{3}, p = -\frac{1}{2}[/latex]. Так как [latex]\frac{m+1}{n} = 3[/latex] — целое (второй случай).
3) Вычислить интеграл [latex] I=\int x^{5} (1-x^{2})^{-\frac{1}{2}} dx [/latex]. Графиком подынтегральной функции будет:
В данном случае [latex] m=5,n=2,p=-\frac{1}{2} [/latex], так что [latex] \frac{m+1}{n}=3 [/latex] (второй случай). Сделав подстановку
Какую из следующих рационализирующих подстановок следует выбрать для интеграла $latex \int\frac{dx}{\sqrt[3]{x^{2}(1+\sqrt[3]{x^{2}})}}=\int x^{-\frac{2}{3}}(1+x^{\frac{2}{3}})^{-1}dx$