M1767. Внутри квадрата

Задачa из журнала «Квант» (2001 год, 2 выпуск)

Условие

Внутри квадрата $ABCD$ расположены точки $P$ и $Q$ так, что $\angle PAQ = \angle PCQ = 45 ^{\circ}$ (рис.1). Докажите, что $PQ^{2} = BP^{2} + QD^{2}$.

Решение

Симметрично отразим $\triangle APB $ относительно прямой $AP$, a $\triangle AQD $ — относительно прямой $AQ$. При этом отраженные точки $B$ и $D$ «склеятся» в одну точку $M$ (рис.2). Затем симметрично отразим $\triangle CPB $ относительно прямой $CP$, а треугольник $CQD$ — относительно прямой $CQ$. При этом отраженные точки $B$ и $D$ «склеятся» в одну точку $N$.

Заметим, что $\angle PMQ + \angle QNP = 180^{\circ}$, но так как треугольники $PMQ$ и $QNP$ равны, то $\angle PMQ = \angle QNP$, т.е. $\angle PMQ = 90^{\circ}$.

Значит, треугольник $PMQ$ прямоугольный и $PM^{2} + QM^{2} = PQ^{2}$. Но $PM = BP$, а $QM = QD$, поэтому окончательно можно утверждать, что $PB^{2} + QD^{2} = PQ^{2}$.

В. Произволов

М1737. Параллелограмм в окружности

Задача из журнала «Квант» (2000 год, 4 выпуск)

Условие

Хорды $AC$ и $BD$ окружности с центром $O$ пересекаются в точке $K$ (рис.$1$). Точки $M$, $N$ — центры окружностей, описанных около треугольников $AKB$ и $CKD$. Докажите, что $OMKN$ — параллелограмм.

А.Заславский

<12>Решение

Пусть $X$ — середина $KB$ (рис.$2$). Тогда $\angle KMX=\displaystyle\frac{1}{2}\angle KMB=\angle KAB=\angle KDC$. Поскольку $MX\bot BD$, то $KM\bot CD$. Так как при этом $ON\bot CD$, то $ON\|KM$. Аналогично, $OM\|KN$. Если точки $O$, $K$, $M$, $N$ не лежат на одной прямой, то $OMKN$ — параллелограмм и $OM=KN$. В противном случае рассмотрим ортогональные проекции отрезков $OM$ и $KN$ на $AC$. Так как точки   $O$, $M$, $N$ проектируются в середины отрезков $AC$, $AK$ и $KC$ соответственно, то проекции обоих параллельных отрезков равны $\displaystyle\frac{KC}{2}$, следовательно, равны и длины самих отрезков.

М1689. Задача об арифметической прогрессии

Задача из журнала «Квант» (1999 год, 3 выпуск)

Условие

Арифметическая прогрессия из натуральных чисел содержит не менее трех членов, их произведение – делитель некоторого числа $n^2 + 1$.

  1. Докажите, что существует такая прогрессия с разностью $12$.
  2. Докажите, что такой прогрессии с разностью $10$ или $11$ не существует.
  3. * Какое наибольшее число членов может содержать такая прогрессия с разностью $12$?

Решение

  1. Рассмотрим числа $1$, $13$, $25$; для них $5^2 + 1 = 13\cdot2$,
    $7^2 + 1 = 25 \cdot 2$. Число $57^2 + 1$ делится на $13\cdot25$: к этому легко придти непосредственно, а общий метод см. ниже.
  2. Из трех чисел $а$, $а + 10$, $а + 20$ одно делится на $3$, а $n^2 + 1$ на $3$ не делится.
    Случай разности $11$ рассматривается аналогично.
  3. Ни один из членов прогрессии не делится на $7$, ибо на $7$ не делится $n^2 + 1$. Значит, из семи членов прогрессии (если бы такая была) можно было бы выбрать два, разность которых делится на $7$. Получили противоречие:
    $k\cdot 12$ кратно $7$ (пишут: $k\cdot 12 \vdots 7$), где $0 < k < 7$.

Докажем, что прогрессия из шести членов есть:

$\left(5, 17, 29, 41, 53, 65\right)$.

Нам нужно доказать существование такого числа $n$, что $n^2 + 1$ делится на
$$\begin{equation}\label{eq:exp1}5\cdot17\cdot 29\cdot 41\cdot 53\cdot 65 = \left( 25\right) \cdot 17\cdot 29\cdot 41\cdot 53\cdot 13.\end{equation}$$
Каждое из шести чисел в правой части $\eqref{eq:exp1}$ обладает
нужным свойством:

$\left(7 + 25x\right)^2 + 1 \vdots 25$, $\left(4 + 17y\right)^2+ 1 \vdots 17$,

$\left(12 + 29z\right)^2 + 1 \vdots 29$, $\left(9 + 41u\right)^2+ 1 \vdots 41$,

$\left(23 + 53v\right)^2 + 1 \vdots 53 \left( так \;как \;23^2 + 1 = 530\right),$

$\left(5 + 13w\right)^2+ 1 \vdots 13$.

Теперь нам понадобится предложение, известное как «китайская теорема об остатках».

Теорема. $a_1, \dotsc , a_m —$ натуральные числа, каждые
два из которых взаимно просты, $r_1, \dotsc , r_m —$произвольные целые числа. Тогда существуют целые числа $x_1, \dotsc , x_m$ такие, что

$a_1x_1+r_1=\dotsc=a_mx_m+r_m$.
При $m = 2$ теорема доказывается с помощью алгоритма Евклида, после чего ее утверждение распространяется на общий случай $m > 2$ по индукции.
Для окончания решения пункта в) достаточно применить теорему к системе уравнений $7 + 25x = 4 + 14y = \dotsc + 23+53v=5+13w$.

Дополнение. Существуют ли более длинные арифметические прогрессии, удовлетворяющие всем условиям нашей задачи? На этот вопрос нетрудно ответить с помощью результатов статьи «Суммы квадратов и целые гауссовы числа» (см. «Квант» №3 за 1999 год).Именно, легко показать, что разность любой прогрессии задачи обязана делиться на $12$. С другой стороны, выше мы показали, что разность любой такой прогрессии, содержащей не менее семи членов, должна делиться на $7$.
Прогрессия задачи с разностью $12\cdot7 = 84$ существует: с помощью статьи «Суммы квадратов…» и китайской теоремы об остатках легко показать, что делителем некоторого числа $n^2 + 1$ является произведение всех членов
прогрессии $\left(29, 113, 197, 281, 365, 449, 533, 617, 701,785\right)$.
Эта прогрессия содержит $10$ членов; $11$ же членов прогрессия задачи с разностью $84$ содержать не может: $84$ не делится на простое число $р = 4k + 3 = 11$.

В.Сендеров

Задача из журнала «Квант» (2001 год, 1 выпуск) M1740

Условие

Натуральные числа $а,$ $b$ и $с$ таковы, что

$$a^2+b^2+c^2=(a-b)^2+(b-c)^2+(c-a)^2.$$

Докажите, что каждое из четырех чисел $ab,bc,ca$ и $ab+bc+ca$ является квадратом.

Решение

Можно записать:
$$a^2+b^2+c^2=2ab+2bc+2ca,\,\,\,\,\,\,\,\,\,\,(*)$$
или иначе:
$$(a+b+c)^2=4(ab+bc+ca).$$
Значит, число $ab + bc + ca$ является квадратом. Равенство $(*)$ можно истолковать как квадратное уравнение относительно $с.$
Поэтому
$$c=(a+b)\pm \sqrt{ab}.$$
Значит, число $ab$ является квадратом. Точно так же убеждаемся, что числа $bc$ и $ca$ – тоже квадраты.

В.Произволов

Задача из журнала «Квант» (2001 год, 1 выпуск) M1739

Условие

Пусть $A$ – произвольная четная цифра, $B$ –произвольная нечетная цифра. Докажите, что существует натуральное число, делящееся на $2^{2000},$ каждая цифра которого – либо $A,$ либо $B.$

Решение

Укажем способ составления из цифр $A$ и $B$ числа, делящегося на $2^n$ для любого натурального $n.$ Обозначим такое число $G_n.$ При $n = 1$ полагаем $G_n=G_1= A.$ Пусть построено число $G_k$ при $n=k \geqslant 1.$ Воспользуемся им при построении следующего числа $G_{k+1},$ делящегося на $2^{k+1}$.

Если $G_k$ делится на $2^{k+1},$ то полагаем $G_{k+1}=G_k,$ в противном случае построим вспомогательное число $F_k$ , обладающее следующими свойствами: число $F_k$ составлено из цифр $A$ и $B$, делится на $2^k$ и имеет в своей десятичной записи ровно $k$ цифр.

Если $G_k$ имеет в своей записи ровно $k$ цифр, то полагаем $F_k=G_k$.

Если в записи $G_k$ более $k$ цифр, положим $F_k$ равным числу, получающемуся из $G_k$ отбрасыванием старших цифр, начиная с $(k + 1)$-й. По признаку делимости на $2^k,$ полученное из $G_k$ после такой операции число $F_k$ будет также делиться на $2^k$.

Если в записи $G_k$ менее $k$ цифр, припишем к числу $G_k$ слева его же несколько раз таким образом, чтобы в результате получилось число, в записи которого не менее $k$ цифр. Это число делится на $G_k$ и, следовательно, на $2^k.$ Если из него отбросить все старшие цифры, начиная с $(k + 1)$-й, то в результате получим число $F_k,$ которое, по признаку делимости на $2^k,$ также делится на $2^k.$

Если число $F_k$ делится на $2^{k+1},$ то полагаем $G_{k+1}=F_k,$ в противном случае полагаем $G_{k+1}=\overline{B F_k},$ приписав к числу $F_k$ число $B$ слева. Положив $F_k=2^k p,$ где $p$ – некоторое нечетное число, получаем $G_{k+1}=10^k B+2^k p=2^k (5^k B + p).$ В скобках стоит четное число, поэтому $G_{k+1}$ делится на $2^{k+1}.$

И.Акулич, А.Жуков