М690. Задача о выпуклых многоугольниках

Задача о выпуклых многоугольниках

Условие

а) Внутри выпуклого многоугольника площади $S_1$ и периметра $P_1$ расположен выпуклый многоугольник площади $S_2$ и периметра $P_2$. Докажите неравенство $$2\dfrac{S_1}{P_1}>\dfrac{S_2}{P_2}$$.

б)Сформулируйте и докажите аналогичное утверждение для выпуклых многогранников.

Решение

а) Заметим сначала, что для треугольников справедливо более сильное утверждение $\dfrac{S_1}{P_1}>\dfrac{S_2}{P_2}$. Это почти очевидно, так как $\dfrac{2S_1}{P_1}$ и $\dfrac{2S_2}{P_2}$ — радиусы кругов, вписанных в эти треугольники.

Для доказательства общего утверждения воспользуемся двумя фактами, которые мы докажем ниже:

  1. Во всякий выпуклый многоугольник площади $S$ и периметра $P$ можно поместить круг радиуса $R>\dfrac{S}{P}$;
  2. Для любого круга, содержащегося в данном многоугольнике $R\leqslant\dfrac{2S}{P}$.

Из $1.$ и $2.$ сразу следует утверждение а): поместим во внутренний многоугольник круг радиуса $R>\dfrac{S_2}{P_2}$; поскольку $R\leqslant\dfrac{2S_1}{P_1}$, получаем требуемое.

Докажем $1.$ Построим на каждой стороне (выпуклого) многоугольника прямоугольник с высотой $h = \dfrac{S}{P}$ (рис. $1$; $S$ — площадь, $P$ — периметр многоугольника). Эти прямоугольники перекрываются: они могут даже «вылезать» за пределы многоугольника. Поскольку суммарная площадь прямоугольников равна $S$, площадь покрытой ими части многоугольника меньше $S$. Поэтому найдётся непокрытая точка, удаленная от всех сторон на расстояние $R>h$

Рис. $1$

Докажем $2.$ Пусть $O$ — центр круга радиуса $R$, содержащегося в многоугольнике (рис. $2$). Поскольку длины высот треугольников с вершиной $O$, основаниями которых служат стороны многоугольника не меньше $R$, получаем $S\geqslant\dfrac12PR$. Поэтому $R\leqslant\dfrac{2S}{P}$. (Заметим, что если для какого-то круга, содержащегося в многоугольнике, $R=\dfrac{2S}{P},$ то этот круг вписан в многоугольник — докажите это!).

Рис. $2$

В пространственном случае можно доказать, что если выпуклый многогранник объёма $V_1$ и площади поверхности $S_1$ содержит выпуклый многогранник объёма $V_2$ и площади поверхности $S_2$, то $3\dfrac{V_1}{S_1}>\dfrac{V_2}{S_2}$.

Доказательство получается заменой слов: периметр — площадь поверхности, площадь — объём, круг — шар, треугольник — пирамида, прямоугольник — призма. Заметим, что константы $2$ (для плоского случая) и $3$ (для пространственного) нельзя заменить меньшими. Примеры, подтверждающие это, показаны на рисунках $3$ и $4$ (узкий прямоугольник внутри узкого длинного прямоугольника и узкая призма внутри узкой высокой призмы).

А. Келарев