Теорема. Рангу матрицы соответствует наибольший порядок минора, не равный нулю.
Дана матрица A=‖aij‖∈Mm×n(P). Пусть максимально возможный порядок ненулевого минора равен p. Следовательно, имеется хотя бы один минор M, отличный от нуля, с порядком p.
Допустим, для удобства доказательства, минор M находится в левой верхнем углу матрицы: (a11⋯a1pa1p+1⋯a1na21⋯a2pa2p+1⋯a2n………………ap1⋯appapp+1⋯apnap+11⋯ap+1pap+1p+1⋯ap+1n………………am1⋯ampamp+1⋯amn),M=|a11⋯a1pa21⋯a2p………ap1⋯app|.
Рассмотрим первые p столбцов матрицы. Если они составляют базу системы столбцов A, тогда утверждение rankA=p справедливо. По определению базы системы векторов (столбцов), эта система должна быть линейно независимой. Предположим, выбранная система линейно зависима, что означает линейную зависимость столбцов минора. Из этого следует, что минор равен нулю по критерию равенства определителя нулю и определению минора. По условию M≠0, возникает противоречие. То есть система столбцов линейно независима и, по определению ранга, rankA=p.
Теперь докажем, что остальные столбцы матрицы линейно выражаются через первые p. Рассмотрим определитель p+1 порядка: M′=|a11⋯a1pa1la21⋯a2pa2l…………ap1⋯appaplai1⋯aipail|, где i=¯1,m, l=¯p+1,n.
При каком-либо i детерминант равен 0. Докажем, что это так. Рассмотрим случай, когда i=¯1,p. Две строки определителя совпадают и тогда по свойству M′=0. В случае, когда i лежит между p+1 и m, вспомогательный определитель M′ является минором матрицы A и имеет порядок p+1. Однако все миноры порядков больших p равны 0, что подразумевается непосредственно в формулировке нашей теоремы, следовательно M′=0.
Можно получить данный минор, воспользовавшись теоремой о разложении определителя по строке. В данном случае разложим по последней. Имеем ai1Ai1+ai2Ai2+⋯+aipAip+aijM=0, где Ai1,Ai2,…,Aip — алгебраические дополнения соответствующих элементов строки. Примечательно, что алгебраическим дополнением при aij является M. Далее ai1Ai1M+ai2Ai2M+⋯+aipAipM+aij=0.
aij=(−Ai1M)ai1+(−Ai2M)ai2+⋯+(−AipM)aip. Формально коэффициенты (−Ai1M),…,(−AipM) зависят от номера i, однако вычисляются независимо от него. Это некие константы, найти которые мы можем с помощью первых p столбцов. Изменяя i от 1 до p, можно получить весь столбец l как линейную комбинацию первых p столбцов. Теорема доказана.
Следствие 1. «Столбцовый» ранг матрицы A совпадает со «строчным».
Чтобы сравнить соответствующие ранги, транспонируем матрицу. Её ранг при этом не изменится, так как в новой матрице значения всех миноров сохранились по свойству определителя транспонированной матрицы. В новой матрице рангом будет ранг строк исходной матрицы, которые стали столбцами после транспонирования. Таким образом, ранги столбцов и строк данной матрицы равны между собой.
Следствие 2. Из равенства нулю определителя матрицы следует, что столбцы матрицы линейно зависимы.
Пусть задана матрица A=‖aij‖ порядка n большего единицы. По условию detA=0, значит наибольший порядок отличного от нуля минора меньше n и rankA<n. По свойству ранга система линейно зависима.
Значительно упрощает вычисление ранга метод окаймляющих миноров. Минор является окаймляющим, если содержит в себе минор меньшего порядка. Метод состоит в том, чтобы среди окаймляющих миноров каждого порядка поочередно искать ненулевые миноры. Рассмотрим на примере матрицы 3−го порядка. Например, для ненулевого минора |a21| окаймляющими будут миноры второго порядка |a11a12a21a22| и |a21a22a31a32|. Если их значения равны 0, ранг матрицы равен 1, иначе переходим к следующему порядку. Определитель матрицы — единственный окаймляющий минор третьего порядка. Если он нулевой, ранг равен двум, иначе трём. Получается, мы действуем до тех пор, пока не найдем нулевые миноры или порядок ненулевого минора не совпадает с количеством столбцов(строк) матрицы.
Существует также метод элементарных преобразований, однако его преимущество только в поиске ранга матрицы, более о матрице мы ничего узнать не сможем. Данный метод следует применять на практике при работе с очень большими порядками и ограниченным количеством времени. Его суть в том, чтобы преобразовать матрицу к диагональному виду и узнать её ранг. Так как новая матрица будет эквивалентна данной матрице, её ранг будет рангом исходной матрицы по свойству ранга эквивалентных матриц.
Примеры решения задач
- Найти ранг матрицы A методом окаймления миноров A=(−132−145−4−31−5321−13).
Решение - Найти ранг матрицы A+C2, где A=(−245100−321),C=(−101302110).
Решение - Дана матрица A=(3−10λ4508−61107271−31−2). При каком λ ранг матрицы будет равен 1? 2?
Решение - Найти максимально линейно независимую подсистему системы векторов α1=(3,−1,−3), α2=(−7,2,5),α3=(5,1,11),α4=(1,−4,−23).
Решение - Чему равно значение выражения 6⋅rank2A+2rankA⋅rankB−13⋅rank2B, где A=(1−2−2536115−40−1−12−71414−35103−450), B=(1211−4123246)?
Решение
Теорема о ранге матрицы
Тест на знание темы «Теорема о ранге матрицы».
Смотрите также
- Курош А.Г. Курс высшей алгебры М.: Наука, 1968, стр. 71-75
- А. И. Кострикин Введение в алгебру М.: Наука, 1994, стр.88-89
- К. Д. Фадеев Лекции по алгебре М.: Наука, 1984 стр.113-115
- Александров П.С. Курс аналитической геометрии и линейной алгебры — 2009 стр. 346-349
- Личный конспект, составленный на основе лекций Белозерова Г.С.