М1730. Выпуклый четырехугольник

Задача из журнала «Квант» (2000 год, 6 выпуск)

Условие задачи

Продолжения противоположных сторон произвольного выпуклого четырехугольника [latex]ABCD[/latex] пересекаются в точках [latex]M[/latex] и [latex]K[/latex]  $(рис.1)$. Через точку [latex]O[/latex] пересечения его диагоналей проводится прямая, параллельная [latex]MK[/latex]. Докажите, что отрезок этой прямой, заключенный внутри четырехугольника, делится точкой  [latex]O[/latex] пополам.

Решение

Проведем  через точку [latex]D[/latex] прямую [latex]l[/latex] (сделайте чертеж самостоятельно), параллельную [latex]KM[/latex]; пусть  [latex]E[/latex] и [latex]F[/latex] — точки пересечения [latex]l[/latex] с прямыми [latex]BC[/latex] и [latex]BA[/latex] соответственно.  Пусть для определенности прямая, проходящая через [latex]O[/latex] параллельно [latex]KM[/latex] и [latex]l[/latex] пересекает стороны [latex]AB[/latex] и [latex]CD[/latex] четырехугольника. В этом случае для решения задачи надо доказать, что точка [latex]O[/latex] лежит на медиане [latex]KL[/latex] треугольника [latex]DKF[/latex]. Мы докажем, что [latex]O[/latex] — точка пересечения медиан [latex]KL[/latex] и [latex]MN[/latex] треугольников [latex]DKF[/latex] и [latex]DME[/latex] соответственно. Обозначим точку пересечения медиан [latex]KL[/latex] и [latex]MN[/latex] через [latex]X[/latex].

Докажем вначале, что [latex]X[/latex] лежит на [latex]BD[/latex], т. е. что прямые [latex]DX[/latex] и [latex]BD[/latex] совпадают. Для этого докажем, что они делят отрезок [latex]KM[/latex] в одном и том же соотношении.

Пусть  [latex]Y[/latex] — точка пересечения [latex]DX[/latex] и [latex]KM[/latex]. Имеем [latex]\frac {\displaystyle KY}{ \displaystyle LD} = \frac{\displaystyle XY}{\displaystyle DX}[/latex] (поскольку треугольники [latex]XYK[/latex] и [latex]XDL[/latex] подобны), [latex]\frac{ \displaystyle MY}{\displaystyle DN}\ = \frac{\displaystyle XY}{\displaystyle DX}\[/latex]. Поэтому [latex]\frac{\displaystyle KY}{\displaystyle MY}\ = \frac{\displaystyle LD}{\displaystyle DN}\[/latex]. Аналогично доказывается, что [latex]BD[/latex] делит [latex]KM[/latex] в отношении [latex]\frac{\displaystyle FD}{\displaystyle DE}\[/latex]. Но [latex]FD = 2LD[/latex], [latex]DE = 2DN[/latex].

Осталось доказать, что [latex]X[/latex] лежит на отрезке [latex]AC[/latex]. Другими словами, что [latex]KL[/latex] и [latex]MN[/latex] делят отрезок [latex]AC[/latex] в одном и том же отношении.

Лемма 1.
[latex]\frac{\displaystyle VS}{\displaystyle BV}\ = \frac{\displaystyle AS}{\displaystyle AC}\[/latex], где [latex]S[/latex] — точка на стороне [latex]AC[/latex] треугольника [latex]ABC[/latex], [latex]V[/latex] — точка пересечения прямой [latex]BS[/latex] с медианой [latex]AN[/latex] этого треугольника.

Рассмотрим точку [latex]T[/latex] отрезка [latex]BC[/latex] такую, что [latex]ST[/latex] [latex]||[/latex] [latex]AN[/latex]. Из теоремы Фалеса следует, что [latex]\frac{\displaystyle VS}{\displaystyle BV}\ = \frac{\displaystyle NT}{\displaystyle BN}\ = \frac{\displaystyle NT}{\displaystyle NC}\ = \frac{\displaystyle AS}{\displaystyle AC}\ [/latex].

Лемма 2.
[latex]\frac{\displaystyle VS}{\displaystyle UV} = \left(\frac{\displaystyle AS}{\displaystyle AU}\right) \cdot \left (\frac{\displaystyle AB}{\displaystyle AC} \right )[/latex], где [latex]U[/latex] и [latex]S[/latex] — точки на сторонах [latex]AB[/latex] и [latex]AC[/latex] треугольника [latex]ABC[/latex] соответственно, а [latex]V[/latex] — точка пересечения прямой [latex]US[/latex] с медианой [latex]AN[/latex] этого треугольника.

На стороне [latex]AC[/latex] возьмем точку [latex]Z[/latex] такую, что [latex]UZ[/latex] [latex]||[/latex] [latex]BC[/latex].  По лемме 1 имеем [latex]\frac{\displaystyle VS}{\displaystyle UV}\ = \frac{\displaystyle AS}{\displaystyle AZ}\[/latex], а по теореме Фалеса [latex]\frac{\displaystyle AC}{\displaystyle AB}\ = \frac{\displaystyle AZ}{\displaystyle AU}\[/latex]. Осталось перемножить эти равенства.

Доказанные утверждения позволяют завершить решение задачи. Именно, по лемме 2 медиана [latex]KL[/latex] делит отрезок [latex]AC[/latex] (считая от [latex]C[/latex])  в отношении [latex]m = \left(\frac{\displaystyle CK}{\displaystyle KD}\right) \cdot \left (\frac{\displaystyle KF}{\displaystyle AK} \right )[/latex], а медиана [latex]MN[/latex] — в отношении [latex]n = \left(\frac{\displaystyle MC}{\displaystyle ME}\right) \cdot \left (\frac{\displaystyle MD}{\displaystyle MA} \right )[/latex]. Но [latex]\frac{\displaystyle MC}{\displaystyle ME}\ = \frac{\displaystyle KC}{\displaystyle KD}\[/latex],  [latex]\frac{\displaystyle KF}{\displaystyle AK}\ = \frac{\displaystyle MD}{\displaystyle MA}\[/latex]. Следовательно, [latex]m = n[/latex].
Утверждение задачи доказано.

Замечание. Вот ещё одно, более естественное, хотя и несколько более сложное, доказательство леммы 2.

Проведем через [latex]V[/latex] параллельные [latex]AS[/latex] и [latex]AU[/latex] прямые $(рис. 2)$.

Имеем: [latex]\frac{\displaystyle x}{\displaystyle y} = \frac{\displaystyle AC}{\displaystyle AB}[/latex] (это характеристическое свойство точек медианы!). Теорема Фалеса дает: [latex]\frac{\displaystyle VS}{\displaystyle y} = \frac{\displaystyle US}{\displaystyle AU}[/latex], [latex]\frac{\displaystyle x}{\displaystyle UV} = \frac{\displaystyle AS}{\displaystyle US}[/latex]. Перемножая эти два равенства, получаем
[latex]\frac{\displaystyle VS}{\displaystyle UV} = \left(\frac{\displaystyle AS}{\displaystyle AU}\right) \cdot \left (\frac{\displaystyle y}{\displaystyle x} \right ) = \left (\frac{\displaystyle AS}{\displaystyle AU} \right ) \cdot \left (\frac{\displaystyle AB}{\displaystyle AC} \right )[/latex].
Лемма доказана.

М. Волкевич, В. Сендеров

M1724

Задача из журнала «Квант» (2000 год, 2 выпуск)

Условие задачи

В треугольнике [latex] ABC [/latex] проведены высоты [latex] AD [/latex] и [latex] CE [/latex], пересекающиеся в точке [latex] O [/latex](рис.1). Прямая [latex] DE [/latex] пересекает продолжение стороны [latex] AC [/latex] в точке [latex] K[/latex].

Докажите, что медиана [latex] BM [/latex] треугольника [latex] ABC [/latex] перпендикулярна прямой [latex] OK [/latex].

Решение

Докажем, что прямая [latex] OM [/latex] перпендикулярна на [latex] KB [/latex] (рис.1).
Отсюда непосредственно будет следовать утверждение задачи, поскольку в этом случае [latex] O [/latex] окажется ортоцентром треугольника [latex] KBM [/latex] (рис.2).

Пусть основание перпендикуляра, опущенного из точки [latex] O [/latex] на прямую [latex] BK [/latex], служит точка [latex] N [/latex] (рис.3).

Поскольку точки [latex] E [/latex] и [latex] N [/latex] лежат на окружности с диаметром [latex] OB [/latex], то угол [latex] BND [/latex] равен углу [latex] BED [/latex]. Аналогично, четырехугольник [latex] AEDC [/latex] вписан в окружность с диаметром [latex] AC [/latex].

Поэтому угол [latex] BED [/latex] равен углу [latex] ACB[/latex]. Таким образом, сумма углов [latex] KND [/latex] и [latex] ACB [/latex] равна [latex]180^\circ[/latex], т.е. четырехугольник [latex] KNDC [/latex] вписанный.

Значит, угол [latex] NCK [/latex] равен углу [latex] NDK [/latex]. Но угол [latex] NDE [/latex] равен углу [latex] NBE [/latex] в силу того, что точки[latex] B [/latex],[latex] D [/latex],[latex] E [/latex] и [latex] N [/latex], как мы уже отмечали, лежат на одной окружности с диаметром [latex] OB [/latex]. Поэтому равны углы [latex] NBA [/latex] и [latex] NCA [/latex]. Т.е. точка [latex] N [/latex] лежит на описанной окружности треугольника [latex] ABC [/latex].

Нам осталось совсем немного. Продолжим прямую [latex] NO [/latex] до пересечения с описанной окружностью треугольника [latex] ABC [/latex] в точке [latex] P [/latex] (рис.4).

Так как угол [latex] BNP [/latex] прямой, то [latex] BP [/latex] — диаметр этой окружности. Значит, углы [latex] BAP [/latex] и [latex] BCP [/latex] прямые. Поэтому отрезок [latex] AP [/latex] параллелен [latex] CE [/latex], а [latex] PC [/latex] параллелен [latex] AD [/latex]. Но отсюда [latex] APCO [/latex]- параллелограмм, и прямая [latex] NO [/latex] делит [latex] AC [/latex] пополам, что и требовалось доказать.

М. Волкевич

М1577. О высоте, медиане и биссектрисе треугольника

Задача из журнал «Квант» (1997)

Условие

В треугольнике отношение синуса одного угла к косинусу другого равно тангенсу третьего. Докажите, что высота, проведенная из вершины первого угла, медиана, проведенная из вершины второго, и биссектриса третьего угла пересекаются в одной точке.

Решение

M15772

Пусть [latex] \alpha , \beta , \gamma [/latex] — углы треугольника ABC, в котором AH — высота, BK — медиана, CL — биссектриса. Из  условия

[latex] \frac{\sin \alpha }{\cos \beta }=\tan \gamma [/latex]  (1)

следует, что углы ABC и ACB острые, поскольку  [latex] \sin\alpha [/latex] >0 и в треугольнике не может быть двух тупых углов. Следовательно, основание H высоты AH — внутренняя точка отрезка BC. Найдем отношения, в которых делят высоту AH (считая от основания) два других отрезка. Высота AH параллелограмма ABCD делится его диагональю BD в отношении:

[latex] \frac{BH}{AD}=\frac{BH}{BC}=\frac{c\cos \gamma }{a}=\frac{\sin\gamma \cos \beta }{\sin \alpha }[/latex].  (2)

Биссектриса же CL делит сторону НА треугольника НАС в отношении:

[latex] \frac{HC}{CA}=\cos\gamma [/latex].   (3)

Отношения (2) и (3) равны в том и только в том случае, когда, [latex]\sin\gamma\cos\beta =\cos\gamma\sin\alpha [/latex], что эквивалентно условию (1).

Таким образом, условие (1) эквивалентно тому, что AH, BK, CL пересекаются в одной точке.

Замечания.

  1. Для треугольника задачи [latex]\left | \angle BAC-\frac{\pi }{2} \right |< \frac{\pi }{2}-\angle BAH[/latex] тогда и только тогда, когда [latex]\angle BCA >\frac{\pi }{4}[/latex]. Это легко следует из (1).
  2. Из предыдущего замечания сразу следует, что если в остроугольном треугольнике ABC биссектриса CL, медиана ВК и высота АН пересекаются в одной точке, то [latex]\angle BCA>\frac{\pi }{4}[/latex].Это — задача IV Всесоюзной математической олимпиады (см. книгу Н Б Васильева и А А.Егорова «Задачи Всесоюзных математических олимпиад» ~ М .: Наука, 1988; задача 135). Нетрудно показать, что для любого угла ВАС треугольник задачи существует. Из этого следует, что для тупоугольного треугольника задачи неравенство [latex]\angle ACB\geq \frac{\pi }{4}[/latex] выполняется не всегда.
  3. Если в неостроугольном треугольнике ABC высота АН, медиана ВК и биссектриса CL пересекаются в одной точке, то [latex]\angle ACB>\angle ABC[/latex]. Это можно доказать геометрически, но проще — с помощью (1).

Л.Алътшулер, В.Сендерос