Оценка погрешности приближенного вычисления определенных интегралов по формуле Тейлора

Рассмотрим погрешность приближённого вычисления определённых интегралов по формуле Тейлора.

Обозначим погрешность через Rn

Rn представляет собой разность истинного значения определённого интеграла и полученного в результате приблизительного вычисления.

Разумеется, что истинное значение также считается приближённо. Иначе, можно было б использовать точные методы вычисления определённых интегралов.

Проанализируем погрешность вычисление примера 1 :

0.30e2x2=0.320.333+20.5554(0.3)721+=0.30.018+0.000972

0.30.018=0.282

Видем, что каждый следующий член суммы на порядки меньше предыдущего.

Если вычислить интеграл, взяв только первый член ряда, получим погрешность Rn0.018972

Два первых:

Rn0.000972

Имеем, что высокая точность достигается довольно быстро.

Аналогичные рассуждения можно провести с  примером 2.

Литература :