Processing math: 100%

13.4 Производная сложной функции

Пусть g — отображение открытого множества ERn в открытое множество NRm, а f:NRp. Тогда можно рассматривать сложную функцию F:ERp, F(x)=f(g(x))   (xE). Ее называют композицией F=fg.

Теорема. Пусть отображение g дифференцируемо в точке x0E, а отображение f дифференцируемо в соответствующей точке y0=g(x0)N. Тогда композиция F=fg дифференцируема в точке x0 и справедливо равенство
F(x0)=f(y0)g(x0).

Обозначим A=f(y0), B=g(x0). При достаточно малой длине вектора k вектор y0+kN и справедливо равенство
f(y0+k)f(y0)=A(k)+α(k)|k|,
где
limk0α(k)=0(α(0)=0).
(Заметим, что N — открытое множество, и поэтому y0+kN при достаточно малых по длине векторах k.) Если вектор h достаточно мал, то x0+hE. Положим kk(h)=g(x0+h)g(x0). Тогда f(y0+k)=f(g(x0+h))=F(x0+h) и получаем
F(x0+h)F(x0)=A(k(h))+α(k(h))|k(h)|,
где
k(h)=B(h)+β(h)|h|
по свойству дифференцируемости отображения g, и limh0β(h)=0. Подставив это в равенство (13.3), получаем
F(x0+h)F(x0)=A(B(h))+r(h),
где
r(h)=A(β(h)|h|)+α(k(h))|k(h)|.
По определению производной, нужно доказать, что limh0|r(h)||h|=0,
и тем самым теорема будет доказана.
Пусть r1(h)=A(β(h)|h|). Тогда в силу линейности отображения А,
|r1(h)||h|=|A(β(h))|A|β(h)|.
Но правая часть стремится к нулю при h0, и поэтому получаем, что
limh0|r1(h)||h|=0.
Теперь положим r2(h)=α(k(h))|k(h)|. Воспользуемся неравенством
|k(h)||B(h)|+|h||β(h)|[B+|β(h)|]|h|,
откуда
|r2(h)||h|(B+|β(h)|)|α(k(h))|.
Первый множитель справа ограничен при достаточно малых h, а второй множитель справа стремится к нулю при h0 в силу (13.2).
Таким образом, |r(h)||h||r1(h)||h|+|r2(h)||h| стремится к нулю при h0, и теорема доказана.

Замечание. В правой части равенства (13.1) мы имеем композицию линейных отображений f(y0) и g(x0). Поэтому доказанную теорему можно сформулировать так: производная композиции равна композиции производных.

Цепное правило.
Пусть z=f(y1,,ym) – действительная функция. Если положить yi=gi(x)(i=1,,m), то получим z=f(g1(x),,gm(x)), и тогда, согласно правилу дифференцирования сложной функции,
dzdx=fy1dg1dx++fymdgmdx
Положим теперь yi=gi(x1,,xn)(i=1,,m) и получим сложную функцию z=f(g1(x1,,xn),,gm(x1,,xn)). Если воспользоваться упомянутым только что правилом дифференцирования сложной функции, то получим
zxi=fy1g1xi++fymgmxi(i=1,,n).
Это равенство называется цепным правилом.

Цепное правило можно вывести также из только что доказанной теоремы. Действительно, положим в теореме p=1, т. е. рассмотрим случай, когда f – действительная функция. Тогда F:ER – действительная функция. Из соотношения (13.1) видно, что матрица производной F(x0) равна произведению матриц f(y0) и g(x0). В векторной форме это можно записать так:
(Fx1(x0),,Fxn(x0))=
=(fy1(y0),,fym(y0))(g1x1(x0)g1xn(x0)gmx1(x0)gmxn(x0)).
В частности,
Fxi=fy1g1xi++fymgmxi(i=1,,n),
и тем самым снова получаем цепное правило.

Примеры решения задач

Рассмотрим примеры задач, в которых фигурируют производные сложных функций. Читателю с целью самопроверки предлагается решить данные примеры самому, а затем сверить свое решение с приведенным.

  1. Найти производную сложной функции u=xyyx, где x=sin(t), y=cos(t)
    Решение

    ux=(xyyx)=1y(x)y(1x)=1y+yx2
    uy=(xyyx)=x(1y)1x(y)=xy21x
    dxdt=(sin(t))=cos(t) dydt=(cos(t))=sin(t)
    dudt=uxdxdt+uydydt=(1y+yx2)cos(t)+(xy1x)(sin(t))

  2. Найти полную производную сложной функции u=x+y2+z3, где y=sin(x), z=cos(x)
    Решение

    dudx=ux+uydydx+uzdzdx==1+2ycos(x)+3z2(sin(x))=1+2sin(x)cos(x)3cos2(x)sin(x)

  3. Найти полный дифференциал сложной функции u=ln2(x2+y2z2)
    Решение

    Вначале находим частные производные:
    ux=2ln(x2+y2z2)1x2+y2z22x
    uy=2ln(x2+y2z2)1x2+y2z22y
    uz=2ln(x2+y2z2)1x2+y2z2(2z)
    Для функции n-переменных y=f(x1,x2,,xn) полный дифференциал определяется выражением : dy=yx1dx1+yx2dx2++yxndxn. Согласно этой формуле, получаем :
    du=4ln(x2+y2z2)1x2+y2z2(xdx+ydyzdz)

  4. Вычислить приближенно (1,02)3,01
    Решение

    Рассмотрим функцию z=zy. При x0=1 и y0=3 имеем z0=13=1,
    Δx=1,021=0,02Δy=3,013=0,01.
    Находим полный дифференциал функции z=xy в любой точке:
    dz=yxy1Δx+yln(x)Δy
    Вычисляем его значения в точке M(1,3) при данных приращениях Δx=0,02 и Δy=0,01
    dz=3120,02+13ln(1)0,02=0,06
    Тогда z=(1,02)3,01z0+dz=1+0,06=1,06

  5. Найти частные производные второго порядка функции z=ex2y2
    Решение

    Вначале найдем частные производные первого порядка:
    zx=ex2y22xy2,zy=ex2y22x2y
    Продифференцировав их еще раз, получим:
    2zx2=ex2y24x2y4+ex2y22y2
    2zy2=ex2y24x4y2+ex2y22x2
    2zxy=ex2y24x3y3+ex2y24xy
    2zyx=ex2y24x3y3+ex2y24xy
    Сравнивая последние два выражения, видим, что 2zxy=2zyx

  6. Найти полный дифференциал второго порядка функции z=x3+y3+x2y2
    Решение

    Вначале находим частные производные до второго порядка:
    zx=3x2+2xy2,zy=3y2+2x2y
    2zx2=6x+2y2,2zy2=6y+2x2,2zxy=4xy
    Полный дифференциал второго порядка d2z функции z=f(x,y) выражается формулой:
    d2z=2zx2dx2+22zxydxdy+2zy2dy2
    Следовательно,
    d2z=(6x+2y2)dx2+8xydxdy+(6y+2x2)dy2

Литература

  1. Лысенко З.М. Конспект лекций по математическому анализу.
  2. В. И. Коляда, А. А. Кореновский «Курс лекций по математическому анализу». — Одесса: Астропринт, 2009, ч.1, раздел 13.4 «Производная сложной функции» (стр. 311 — 313).
  3. А. П. Рябушко «Сборник индивидуальных заданий по высшей математике». — Минск: «Вышэйшая школа», 1991, ч.2, разделы 10.2,10.3 «Полный дифференциал. Дифференцирование сложных и неявных функций», «Частные производные высших порядков. Касательная плоскость и нормаль к поверхности» (стр. 212 — 216).
  4. И. И. Ляшко, А.К. Боярчук, Я.Г.Гай, Г.П.Головач «Математический анализ: введение в анализ, производная, интеграл». «М.Едиториал», 2001, глава 2(4), «Производные и дифференциал высших порядков» (стр. 137).

Производная сложной функции

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.