Односторонние и бесконечные производные

Понятия односторонних и бесконечных производных вводятся аналогично понятиям односторонних и бесконечных пределов.

Определение: Если функция [latex]y = f(x)[/latex], непрерывна слева в точке [latex]x_{0}[/latex], то есть [latex]\lim\limits_{x \to x_{0} — 0} f(x) = f(x_{0})[/latex] и [latex]\exists \lim\limits_{\Delta x \to -0} \frac{\Delta y}{\Delta x}[/latex], то этот предел называют левой производной функции [latex]y[/latex] в точке [latex]x_{0}[/latex].
Левая производна кратко записывается [latex]{f_{-}}'(x_{0})[/latex].

Определение: Если функция [latex]y = f(x)[/latex], непрерывна справа в точке [latex]x_{0}[/latex], то есть [latex]\lim\limits_{x \to x_{0} + 0} f(x) = f(x_{0})[/latex] и [latex]\exists \lim\limits_{\Delta x \to +0} \frac{\Delta y}{\Delta x}[/latex], то этот предел называют правой производной функции [latex]y[/latex] в точке [latex]x_{0}[/latex].
Правая производна кратко записывается [latex]{f_{+}}'(x_{0})[/latex].

Определение: Прямая проходящая через точку [latex](x_{0}, f(x_{0}))[/latex], с угловым коэффициентом [latex]{f_{-}}'(x_{0})[/latex], называется левой касательной к графику функции [latex]y[/latex] в точке [latex](x_{0}, f(x_{0}))[/latex].

Определение: Прямая проходящая через точку [latex](x_{0}, f(x_{0}))[/latex], с угловым коэффициентом [latex]{f_{+}}'(x_{0})[/latex], называется правой касательной к графику функции [latex]y[/latex] в точке [latex](x_{0}, f(x_{0}))[/latex].

Определение: Если функция [latex]y=f(x)[/latex], непрерывна в точке [latex]x_{0}[/latex] и [latex]\exists \lim\limits_{\Delta x \to 0} = \pm \infty[/latex], тогда производная [latex]{f}'(x_{0})[/latex] называется бесконечной производной.

Замечание: Геометрическое истолкование производной как углового коэффициента касательной распространяется и на случай бесконечной производной; но здесь — касательная оказывается параллельной оси [latex]Oy[/latex]. В случаях a и b эта производная равна, соответственно, [latex]+\infty[/latex] и [latex]-\infty[/latex] (обе односторонние производные совпадают по знаку); в случаях c и d односторонние производные разнятся знаком.
svg

Тест:

Односторонние и бесконечные производные.

Тест проверки усвоения информации об односторонних и бесконечных производных.


Таблица лучших: Односторонние и бесконечные производные.

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Список литературы:

  • Курс лекций по математическому анализу в двух частях Часть 1. В.И.Коляда, А.А.Кореновский стр. 110-111.
  • Лекции Зои Михайловны Лысенко.

Пределы монотонных функций

Перед тем как рассматривать теорему, давайте вспомним, что такое монотонная функция и нарисуем  её график.

Функция [latex]f(x)[/latex] называется монотонно возрастающей на отрезке [latex][a;b][/latex], если [latex]\forall x_{1}, x_{2}\in[a;b],x_{1}>[/latex] [latex]x_{2}\Rightarrow f(x_{1})\geq f(x_{2})[/latex]

Функция [latex]f(x)[/latex] называется монотонно убывающей на отрезке [latex][a;b][/latex], если [latex]\forall x_{1}, x_{2}\in [a;b] ,x_{1}>[/latex] [latex] x_{2}\Rightarrow f(x_{1})\leq f(x_{2})[/latex]

Функция [latex]f(x)[/latex] называется строго монотонно убывающей на отрезке [latex][a;b][/latex], если [latex]\forall x_{1}, x_{2}\in [a;b],x_{1}>[/latex][latex]x_{2}\Rightarrow f(x_{1})<f(x_{2})[/latex]

Функция [latex]f(x)[/latex] называется строго монотонно возрастающей на отрезке [latex][a;b][/latex], если [latex]\forall x_{1},x_{2}\in[a;b], x_{1}>[/latex][latex]x_{2}\Rightarrow f(x_{1})>f(x_{2})[/latex]

Пример графика монотонно возрастающей функции.

grafik1

 

На графике видно, что [latex]\forall x_{1}, x_{2} : x_{1}>x_{2}[/latex], соответствующие значения функции [latex]f(x_{1})\geq f(x_{2})[/latex]

Пример графика монотонно убывающей функции.

grafik2

На графике видно, что [latex]\forall x_{1},x_{2} : x_{1}>x_{2}[/latex], соответствующие значения функции [latex]f(x_{1})\leq f(x_{2})[/latex]

Теорема о существовании односторонних пределов у монотонных функций

Формулировка:

Если функция [latex]f(x)[/latex] определена и монотонна на отрезке [latex][a;b][/latex], то в каждой точке [latex]x_{0}\in (a;b)[/latex] эта функция имеет конечные пределы слева и справа, а в точках [latex]a[/latex] и [latex]b[/latex] правосторонний и левосторонний пределы.

Доказательство:

Пусть, например, функция [latex]f(x)[/latex] монотонно возрастает на [latex][a;b][/latex]. Выберем произвольную внутреннюю точку [latex]x_{0}\in (a;b][/latex]. Тогда [latex]\forall x\in [a;x_{0})\Rightarrow [/latex][latex]f(x)\leq f(x_{0})\Rightarrow[/latex] [latex]f(x)[/latex] ограничена сверху на [latex][a;x_{0})\Rightarrow[/latex][latex]\exists\sup f(x)=M\leqslant f(x_{0})[/latex].
Согласно определению:
а) [latex]\forall x\in [a;x_{0})\Rightarrow[/latex][latex] f(x) \leqslant M[/latex]
б) [latex]\forall \varepsilon > 0\exists x_{\varepsilon }:[/latex][latex]M-\varepsilon < f(x_{\varepsilon }),[/latex] обозначим [latex]\delta =x_{0}-x_{\varepsilon }>0[/latex].
Если [latex]x\in (x_{\varepsilon };x_{0})=(x_{0-\delta };x_{0})[/latex], то [latex]f(x_{\varepsilon })\leq f(x)[/latex].
Итог: [latex]\forall \varepsilon >0\exists \delta>0:[/latex][latex]\forall x\in (x_{0}-\delta;x_{0}):[/latex][latex]M-\varepsilon <[/latex] [latex]f(x_{\varepsilon }) < f(x)\leq M<[/latex] [latex] M+\varepsilon \Leftrightarrow[/latex][latex] |f(x)-M|< \varepsilon[/latex]
[latex]\lim_{x\rightarrow x_{0-0} } f(x) = M[/latex]
Итак [latex]f(x_{0}-0)= \sup f(x)[/latex], [latex]a\leqslant x<x_{0} [/latex].
Аналогично доказываем, что функция имеет в точке [latex]x_{0}\in [a;b)[/latex] предел справа причем [latex]f(x_{0}+0)=\inf f(x)[/latex], [latex]x_{0}<x\leqslant b[/latex].
Следствие. Если функция [latex]f[/latex] определена и монотонна на интервале [latex](a;b)[/latex], [latex]\forall\ x_{0}\in (a;b)\exists \[/latex] предел справа и слева, причем если [latex]f[/latex] возрастает, то
[latex]f(x_{0}-0)=\lim\limits_{x\to x_{0}-0} f(x)[/latex] [latex] \leq\lim\limits_{x\to x_{0}+0} f(x)=[/latex][latex]f(x_{0}+0)[/latex],
если убывает, то
[latex]f(x_{0}-0)=\lim\limits_{x\to x_{0}-0} f(x)[/latex] [latex] \geq\lim\limits_{x\to x_{0}+0} f(x)=[/latex][latex]f(x_{0}+0)[/latex].

Литература

Тест

Тест по теме Пределы монотонных функций.

Желаем удачи!

Таблица лучших: Предел монотонной функции

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Различные типы пределов: односторонние конечные пределы

Определения

Односторонний предел по Коши

Число [latex]A^{‘}[/latex] называют левосторонним пределом функции [latex]f(x)[/latex] в точке [latex]a:[/latex]

[latex]A^{‘}=\lim\limits_{x\rightarrow a-0} f(x),[/latex]

если

[latex]\forall \varepsilon >0\: \: \exists\delta _{\varepsilon }>0\: \:\forall x:a-\delta _{\varepsilon }<x<a:|f(x)-A^{‘}|<\varepsilon[/latex]

Аналогично, число [latex]A^{»}[/latex] называют правосторонним пределом функции [latex]f(x)[/latex] в точке [latex]a:[/latex]

[latex]A^{»}=\lim\limits_{x\rightarrow a+0}f(x),[/latex]

если

[latex]\forall \varepsilon >0\: \: \exists\delta _{\varepsilon }>0\: \:\forall x:a<x<a+\delta _{\varepsilon }:|f(x)-A^{»}|<\varepsilon[/latex]

Односторонний предел по Гейне

Число [latex]A^{‘}[/latex] называют левосторонним пределом функции [latex]f(x)[/latex] в точке [latex]a:[/latex]

[latex]A^{‘}=\lim\limits_{x\rightarrow a-0} f(x),[/latex]

если

[latex]\forall \left \{ x_{n} \right \}_{n=1 }^{\infty }:(\forall k \in \mathbb{N}:x_{k}

Аналогично, число [latex]A^{»}[/latex] называют правосторонним пределом функции [latex]f(x)[/latex] в точке [latex]a:[/latex]

[latex]A^{»}=\lim\limits_{x\rightarrow a+0}f(x),[/latex]

если

[latex]\forall \left \{ x_{n} \right \}_{n=1 }^{\infty }:(\forall k \in \mathbb{N}:x_{k}>a )\vee \lim\limits_{n\rightarrow \infty}x_{n}=a\Rightarrow \lim\limits_{n\rightarrow \infty}\left \{ f(x_{n}) \right \}_{n=1 }^{\infty }=A^{»}[/latex]

Пределы слева и справа называют односторонними пределами.
Соответственно, функция [latex]f(x)[/latex] называется непрерывной слева (справа) в точке [latex]a[/latex], если

[latex]\exists \lim\limits_{x\rightarrow a-0}f(x)=f(a)\;(\lim\limits_{x\rightarrow a+0}f(x)=f(a))[/latex].

Теорема

Функция [latex]f(x)[/latex] имеет предел в точке [latex]a[/latex] тогда и только тогда, когда существуют равные между собой односторонние пределы в этой точке. В этом случае их общее значение является пределом функции в точке [latex]a.[/latex]

Спойлер

Необходимость.
Пусть в точке [latex]a[/latex] существует конечный предел, то есть [latex]\exists \delta :\forall x\in (a-\delta ;a+\delta )\lim\limits_{x\rightarrow a} f(x)=A[/latex] из чего следует, что этот же предел существует на промежутках [latex](a-\delta ;a)\: \: (a ;a+\delta)[/latex]. Следовательно односторонние пределы существуют и равны между собой.
Достаточность.
Пусть в точке [latex]a[/latex] существуют односторонние пределы, равные между собой [latex]\forall x\in (a-\delta^{‘};a)\: \lim\limits_{x\rightarrow a-0}=A [/latex] и [latex]\forall x\in (a ;a+\delta^{»})\: \lim\limits_{x\rightarrow a+0}=A[/latex] из чего следует, что [latex]\exists \delta_{0}\leqslant min(\delta^{‘} ;\delta^{»}) :\forall x\in (a-\delta_{0};a+\delta _{0})\: \lim\limits_{x\rightarrow a}=A[/latex].
Теорема доказана. [latex]\blacksquare[/latex]

[свернуть]

Пример

Дана функция [latex]f(x)=\rm sgn(x):\: \left\{\begin{matrix}1, x>0;\\ 0, x=0;\\ -1, x<0.\end{matrix}\right.[/latex]
signx
Выяснить существует ли предел в точке [latex]0.[/latex]

Спойлер

Рассмотрим поведение функции в окрестности точки [latex]0[/latex]. Как видно [latex]\lim\limits_{x\rightarrow -0}\: \rm sgn(x)=-1[/latex] и [latex]\lim\limits_{x\rightarrow +0}\: \rm sgn(x)=1.[/latex] Пределы справа и слева не равны. Согласно вышеприведенной теореме, можно сделать вывод, что предел функции в точке [latex]0[/latex] не существует.

[свернуть]

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр. 77-79
  2. Кудрявцев Л.Д., Курс математического анализа, 2003, т.1. стр. 185-189

Тест


Таблица лучших: Односторонние конечные пределы

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных