Теорема Вейерштрасса о равномерных приближениях непрерывных функций многочленами

Тригонометрическим многочленом степени $n$ называют бесконечно дифференцируемую и $2\pi$-периодическую функцию $$T_n(x) = \dfrac{a_0}{2} + \sum \limits_{k=1}^{n} a_k \cos kx + b_k \sin kx,$$ где $a_0, a_1, \ldots, a_n, b_1, \ldots, b_n$ — некоторые вещественные числа, $a_n \cdot b_n \neq 0$. Множество всех тригонометрических многочленов образует линейное пространство.

Теорема 1 (Вейерштрасса)

Любую непрерывную $2\pi$-периодическую функцию можно с любой степенью точности равномерно приблизить тригонометрическим многочленом, то есть для любого $\varepsilon > 0$ найдётся такой тригонометрический многочлен $T_n(x)$, что $$\max \limits_{-\infty < x < +\infty} \left| f(x) — T_n(x) \right| < \varepsilon.$$

Доказательство

Так, как сумма Фейера $\sigma_n(x)$ — это среднее арифметическое частичных сумм ряда Фурье функции $f(x)$, которые являются тригонометрическими многочленами, то она также будет тригонометрическим многочленом. В силу теоремы Фейера, для любого $\varepsilon > 0$ найдётся сумма Фейера $\sigma_n(x)$ такая, что $$\max \limits_{x \in \mathbb{R}} \left| f(x) — \sigma_n (x) \right| < \varepsilon.$$

Замечание

Непрерывную функция $f(x)$ на отрезке $[-\pi, \pi]$ можно равномерно приблизить на этом отрезке тригонометрическим многочленом в том и только том случае, когда $f(\pi) = f(-\pi)$.

Теорема 2 (Вейерштрасса)

Непрерывную на отрезке $[a, b]$ функцию $f(x)$ можно равномерно приблизить с любой степенью точности многочленом, то есть для любого $\varepsilon > 0$ найдётся многочлен $P_n(x) = a_0 + a_1 x + \ldots + a_n x^n$ такой, что $$\max \limits_{a \le x \le b} \left| f(x) — P_n(x) \right| < \varepsilon.$$

Доказательство.

Пусть $[a, b] = [0, \pi]$ и чётным образом продолжим функцию $f(x)$ на отрезок $[-\pi, 0]$, а затем на всю вещественную ось с периодом $2 \pi$. Получим чётную, $2 \pi$-периодическую непрерывную функцию, совпадающую с $f(x)$ на отрезке $[0, \pi]$ (рис.1).

Weierstrass-theorem

В силу теоремы Фейера для любого $\varepsilon > 0$ найдётся тригонометрический многочлен $T_m(x)$ такой, что $$\max \limits_{-\infty < x < +\infty} \left| f(x) — T_m(x) \right| < \dfrac{\varepsilon}{2}. (1)$$

Каждая из функций $\sin kx$ и $\cos kx$ является аналитической и поэтому раскладывается в степенной ряд, сходящийся на всей числовой прямой. Так как $T_m(x)$ — это конечная линейная комбинация функций $\sin kx$ и $\cos kx$, то $T_m(x)$ также раскладывается в степенной ряд, сходящийся для всех вещественных $x$, $$T_m(x) = c_0 + c_1 x + \ldots + c_n x^n + \ldots.$$

Известно, что на любом отрезке $[\alpha, \beta]$, лежащем внутри интервала сходимости, степенной ряд сходится равномерно. Следовательно, $\forall \varepsilon > 0$ существует такое $k$, что $$\max \limits_{0 \le x \le \pi} \left| T_m(x) — (c_0 + c_1 x + \ldots + c_k x^k) \right| < \dfrac{\varepsilon}{2}. (2)$$

Если положить $P_k (x) = c_0 + c_1 x + \ldots + c_k x^k$, то в силу (1) и (2) получаем $$\left| f(x) — P_k(x) \right| \le \left| f(x) — T_m(x) \right| + \left| T_m(x) — P_k(x) \right| \le$$ $$\le \max \limits_{-\infty < x < +\infty} \left| f(x) — T_m(x) \right| + \max_{0 \le x \le \pi} \left| T_m(x) — P_k(x) \right| < \dfrac{\varepsilon}{2} + \dfrac{\varepsilon}{2} = \varepsilon.$$

Следовательно, $$\max \limits_{0 \le x \le \pi} \left| f(x) — P_k(x) \right| < \varepsilon.$$

Пусть теперь функция $f(x)$ непрерывна на произвольном отрезке $[a, b]$. Положим $F(t) = f(a + \dfrac{t}{\pi} (b — a))$, $0 \le t \le \pi$.

Тогда функция $F(t)$ непрерывна на $[0, \pi]$ и её можно равномерно приблизить на $[0, \pi]$ многочленом $Q_k(t)$, т.е. $$\max \limits_{0 \le t \le \pi} \left| f(a + \dfrac{t}{\pi} (b — a)) — Q_k(t) \right| < \varepsilon. (3)$$

Полагая $x = a + \dfrac{t}{\pi} (b-a), P_k(x) = Q_k (\pi \dfrac{x — a}{b — a})$,
получаем из неравенства (3), что $$\max \limits_{a \le x \le b} \left| f(x) — P_k(x) \right| < \varepsilon.$$

Литература

Теорема Вейерштрасса о равномерных приближениях непрерывных функций многочленами

Тест по теме «Теорема Вейерштрасса о равномерных приближениях непрерывных функций многочленами».

Суммируемостью рядов Фурье методом Фейера

Ядро Фейера

Зададим непрерывную и $2\pi$-периодическую функцию $f(x)$. Рассмотрим последовательность $S_n(x)$ частичных сумм ряда Фурье функции $f(x)$, где $$S_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) \cdot D_n(t)dt,(1)$$ а $D_n(t)$ — ядро Дирихле: $$D_n(t) = \dfrac{1}{2} + \cos t + \ldots + \cos nt = \dfrac{\sin(n + \frac{1}{2})t}{2 \cdot \sin \frac{t}{2}}.(2)$$ Определим суммы Фейера как средние арифметические сумм $S_0(x), S_1(x),\ldots, S_n(x)$: $$\sigma_n(x) = \dfrac{S_0(x) + \ldots + S_n(x)}{n+1}.(3)$$

Подставляя в данную формулу выражение для частичной суммы ряда Фурье через ядро Дирихле, получаем, что $$\sigma_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) \dfrac{D_0(t) + \ldots + D_n(t)}{n + 1} dt.$$ Обозначим $$F_n(t) = \dfrac{D_0(t) + \ldots + D_n(t)}{n + 1},(4)$$ тогда $$\sigma_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) F_n(t) dt.(5)$$

Функцию $F_n(t)$ назовём ядром Фейера. Приведём следующие свойства ядра Фейера:

  1. $F_n(t)$ — четная, $2\pi$-периодическая и непрерывная функция;
  2. $\dfrac{1}{\pi} \int \limits_{-\pi}^\pi F_n(t)dt = 1$;
  3. $F_n(t) \ge 0$;
  4. $\lim \limits_{n\to\infty} \max \limits_{\delta \le t \le \pi} F_n(t) = 0$ при любом $\delta \in (0, \pi)$.
  5. Доказательство

    Свойства 1) и 2) сразу следуют из формулы (4) и соответствующих свойств ядер Дирихле.

    Докажем свойство 3). Подставляя в формулу (4) для ядра Фейера выражение (2) для ядер Дирихле, получаем $$(n + 1) \cdot F_n(t) = D_0(t) + \ldots + D_n(t) = \sum_{k=0}^{n}\dfrac{\sin(k + \frac{1}{2})x}{2\sin \frac{x}{2}} =$$ $$=\dfrac{1}{4\sin^2 \frac{x}{2}}\sum_{k=0}^{n}2 \cdot \sin \frac{x}{2} \cdot \sin(k + \frac{1}{2})x = \dfrac{1 — \cos(n + 1)x}{4\sin^2 \frac{x}{2}} \ge 0. (6)$$

    Докажем свойство 4). Из равенства (6) следует, что $\sup \limits_{x \in [\delta, \pi]} F_n(x) \le \dfrac{2}{4\cdot \sin^2 \frac{\delta}{2}} \cdot \dfrac{1}{n + 1} \rightarrow 0$ при $n \rightarrow \infty$, $0 < \delta < \pi$.

    Теорема (Фейера).

    Последовательность $\{\sigma_n(x)\}$ сумм Фейера $2\pi$-периодической непрерывной функции $f(x)$ равномерно сходится к функции $f(x)$.

    Доказательство.

    Докажем равномерную непрерывность $f(x)$ на $\mathbb{R}$.

    Спойлер

    По теореме Кантора функция $f(x)$ равномерно непрерывна на отрезке $[-2\pi, 2\pi]$. Поэтому для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любых $x, t \in [-2\pi, 2\pi]$ таких, что $\left| x — t \right| < \delta$, выполнено неравенство $\left| f(x) — f(t) \right| < \varepsilon$.

    Пусть $\xi$ и $\eta$ – произвольные числа такие, что $\left| \xi — \eta \right| < \delta < \pi$. Тогда для любого $\xi \in \mathbb{R}$ надётся целое число $k$ такое, что $\xi — 2k\pi = x \in [-\pi, \pi]$. Так как по условию $\left| \xi — \eta \right| < \delta < \pi$, то $t = \eta — 2k\pi \in [-2\pi, 2\pi]$, и поэтому $\left| f(\xi) — f(\eta) \right| = \left| f(\xi — 2k \pi) — f(\eta — 2k \pi) \right| = \left| f(x) — f(t) \right| < \varepsilon$, что доказывает равномерную непрерывность функции $f(x)$ на $\mathbb{R}$.

    [свернуть]

    Используя свойства 2) и 3) ядра Фейера, оценим разность $\sigma(x) — f(x)$. Получаем, что $\sigma(x) — f(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi (f(x + t) — f(x)) F_n(t)dt$, $$\left| \sigma(x) — f(x) \right| \le \dfrac{1}{\pi} \int \limits_{-\pi}^\pi \left| f(x + t) — f(x) \right| F_n(t)dt. (7)$$

    Зафиксируем $\varepsilon > 0$. Воспользуемся равномерной непрерывностью функции $f(x)$ на $\mathbb{R}$ и найдём $\delta > 0$ такое, что $\forall x \in \mathbb{R}$ и $\forall \left| t \right| < \delta$ выполнено равенство $\left| f(x + t) — f(x) \right| < \dfrac{\varepsilon}{2}$.

    Разобьём отрезок интегрирования $[-\pi, \pi]$ в формуле (7) на три отрезка: $[-\pi, -\delta], [-\delta, \delta]$ и $[\delta, \pi]$.

    Воспользовавшись свойствами 2) и 3) ядра Фейера, получаем, что $$\dfrac{1}{\pi} \int \limits^{\delta}_{-\delta} \left| f(x + t) — f(x) \right| F_n(t) dt \le \dfrac{1}{\pi} \int \limits^{\delta}_{-\delta} \dfrac{\varepsilon}{2} F_n(t) dt \le$$ $$\le \dfrac{\varepsilon}{2\pi} \int \limits^{\delta}_{-\delta} F_n(t)dt = \dfrac{\varepsilon}{2}. (8)$$

    Из непрерывности на $\mathbb{R}$ $2\pi$-периодичной функции $f(x)$ следует её ограниченность на $\mathbb{R}$. Пусть $\left| f(x) \right| < M$. Воспользуемся свойством 4) ядра Фейера и найдём такое $N$, что $\forall n > N$ выполнено неравенство $$\max \limits_{t \in [\delta, \pi]} F_n(t) < \frac{\varepsilon}{8M}.$$

    Тогда $\forall n > N$ справедливо неравенство $$\dfrac{1}{\pi} \int \limits^{\pi}_{\delta} \left| f(x + t) — f(x) \right| F_n(t)dt \le \dfrac{1}{\pi} \int \limits^{\pi}_{\delta} (\left| f(x + t) \right| + \left| f(x) \right|) F_n(t)dt \le$$ $$\le \dfrac{2M}{\pi} (\pi — \delta) \max \limits_{t \in [\delta, \pi]} F_n(t) < 2M \dfrac{\varepsilon}{8M} = \dfrac{\varepsilon}{4}. (9)$$

    Аналогично для всех $n > N$: $$\dfrac{1}{\pi} \int \limits^{-\delta}_{-\pi} \left| f(x + t) — f(x) \right| F_n(t)dt < \dfrac{\varepsilon}{4}. (10)$$

    Следовательно, для любого $x \in \mathbb{R}$ и для всех $n > N$ выполнено неравенство $\left| \sigma_n(x) — f(x) \right| < \varepsilon$ (из неравенств (7) — (10)), которое означает, что последовательность сумм Фейера $\sigma_n(x)$ равномерно сходится на $\mathbb{R}$ к функции $f(x)$.

    Спойлер

    Задан ряд $1 — 1 + 1 — 1 + \ldots$. Данный ряд расходится, но суммируется в смысле Фейера. Найдём его частичные суммы $S_{2n} = 0$, $S_{2n-1} = 1$ и средние суммы Фейера $\sigma_{2n} = \dfrac{1}{2}$, $\sigma_{2n-1} = \dfrac{n}{2n-1}$, $n = 1, 2, \ldots$. Следовательно, $\sigma_n \to \dfrac{1}{2}$.

    [свернуть]

    Литература

    Суммируемость рядов Фурье методом Фейера

    Тест по теме «Суммируемость рядов Фурье методом Фейера».