Суммируемостью рядов Фурье методом Фейера

Ядро Фейера

Зададим непрерывную и $2\pi$-периодическую функцию $f(x)$. Рассмотрим последовательность $S_n(x)$ частичных сумм ряда Фурье функции $f(x)$, где $$S_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) \cdot D_n(t)dt,(1)$$ а $D_n(t)$ — ядро Дирихле: $$D_n(t) = \dfrac{1}{2} + \cos t + \ldots + \cos nt = \dfrac{\sin(n + \frac{1}{2})t}{2 \cdot \sin \frac{t}{2}}.(2)$$ Определим суммы Фейера как средние арифметические сумм $S_0(x), S_1(x),\ldots, S_n(x)$: $$\sigma_n(x) = \dfrac{S_0(x) + \ldots + S_n(x)}{n+1}.(3)$$

Подставляя в данную формулу выражение для частичной суммы ряда Фурье через ядро Дирихле, получаем, что $$\sigma_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) \dfrac{D_0(t) + \ldots + D_n(t)}{n + 1} dt.$$ Обозначим $$F_n(t) = \dfrac{D_0(t) + \ldots + D_n(t)}{n + 1},(4)$$ тогда $$\sigma_n(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi f(x + t) F_n(t) dt.(5)$$

Функцию $F_n(t)$ назовём ядром Фейера. Приведём следующие свойства ядра Фейера:

  1. $F_n(t)$ — четная, $2\pi$-периодическая и непрерывная функция;
  2. $\dfrac{1}{\pi} \int \limits_{-\pi}^\pi F_n(t)dt = 1$;
  3. $F_n(t) \ge 0$;
  4. $\lim \limits_{n\to\infty} \max \limits_{\delta \le t \le \pi} F_n(t) = 0$ при любом $\delta \in (0, \pi)$.
  5. Доказательство

    Свойства 1) и 2) сразу следуют из формулы (4) и соответствующих свойств ядер Дирихле.

    Докажем свойство 3). Подставляя в формулу (4) для ядра Фейера выражение (2) для ядер Дирихле, получаем $$(n + 1) \cdot F_n(t) = D_0(t) + \ldots + D_n(t) = \sum_{k=0}^{n}\dfrac{\sin(k + \frac{1}{2})x}{2\sin \frac{x}{2}} =$$ $$=\dfrac{1}{4\sin^2 \frac{x}{2}}\sum_{k=0}^{n}2 \cdot \sin \frac{x}{2} \cdot \sin(k + \frac{1}{2})x = \dfrac{1 — \cos(n + 1)x}{4\sin^2 \frac{x}{2}} \ge 0. (6)$$

    Докажем свойство 4). Из равенства (6) следует, что $\sup \limits_{x \in [\delta, \pi]} F_n(x) \le \dfrac{2}{4\cdot \sin^2 \frac{\delta}{2}} \cdot \dfrac{1}{n + 1} \rightarrow 0$ при $n \rightarrow \infty$, $0 < \delta < \pi$.

    Теорема (Фейера).

    Последовательность $\{\sigma_n(x)\}$ сумм Фейера $2\pi$-периодической непрерывной функции $f(x)$ равномерно сходится к функции $f(x)$.

    Доказательство.

    Докажем равномерную непрерывность $f(x)$ на $\mathbb{R}$.

    Спойлер

    По теореме Кантора функция $f(x)$ равномерно непрерывна на отрезке $[-2\pi, 2\pi]$. Поэтому для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любых $x, t \in [-2\pi, 2\pi]$ таких, что $\left| x — t \right| < \delta$, выполнено неравенство $\left| f(x) — f(t) \right| < \varepsilon$.

    Пусть $\xi$ и $\eta$ – произвольные числа такие, что $\left| \xi — \eta \right| < \delta < \pi$. Тогда для любого $\xi \in \mathbb{R}$ надётся целое число $k$ такое, что $\xi — 2k\pi = x \in [-\pi, \pi]$. Так как по условию $\left| \xi — \eta \right| < \delta < \pi$, то $t = \eta — 2k\pi \in [-2\pi, 2\pi]$, и поэтому $\left| f(\xi) — f(\eta) \right| = \left| f(\xi — 2k \pi) — f(\eta — 2k \pi) \right| = \left| f(x) — f(t) \right| < \varepsilon$, что доказывает равномерную непрерывность функции $f(x)$ на $\mathbb{R}$.

    [свернуть]

    Используя свойства 2) и 3) ядра Фейера, оценим разность $\sigma(x) — f(x)$. Получаем, что $\sigma(x) — f(x) = \dfrac{1}{\pi} \int \limits_{-\pi}^\pi (f(x + t) — f(x)) F_n(t)dt$, $$\left| \sigma(x) — f(x) \right| \le \dfrac{1}{\pi} \int \limits_{-\pi}^\pi \left| f(x + t) — f(x) \right| F_n(t)dt. (7)$$

    Зафиксируем $\varepsilon > 0$. Воспользуемся равномерной непрерывностью функции $f(x)$ на $\mathbb{R}$ и найдём $\delta > 0$ такое, что $\forall x \in \mathbb{R}$ и $\forall \left| t \right| < \delta$ выполнено равенство $\left| f(x + t) — f(x) \right| < \dfrac{\varepsilon}{2}$.

    Разобьём отрезок интегрирования $[-\pi, \pi]$ в формуле (7) на три отрезка: $[-\pi, -\delta], [-\delta, \delta]$ и $[\delta, \pi]$.

    Воспользовавшись свойствами 2) и 3) ядра Фейера, получаем, что $$\dfrac{1}{\pi} \int \limits^{\delta}_{-\delta} \left| f(x + t) — f(x) \right| F_n(t) dt \le \dfrac{1}{\pi} \int \limits^{\delta}_{-\delta} \dfrac{\varepsilon}{2} F_n(t) dt \le$$ $$\le \dfrac{\varepsilon}{2\pi} \int \limits^{\delta}_{-\delta} F_n(t)dt = \dfrac{\varepsilon}{2}. (8)$$

    Из непрерывности на $\mathbb{R}$ $2\pi$-периодичной функции $f(x)$ следует её ограниченность на $\mathbb{R}$. Пусть $\left| f(x) \right| < M$. Воспользуемся свойством 4) ядра Фейера и найдём такое $N$, что $\forall n > N$ выполнено неравенство $$\max \limits_{t \in [\delta, \pi]} F_n(t) < \frac{\varepsilon}{8M}.$$

    Тогда $\forall n > N$ справедливо неравенство $$\dfrac{1}{\pi} \int \limits^{\pi}_{\delta} \left| f(x + t) — f(x) \right| F_n(t)dt \le \dfrac{1}{\pi} \int \limits^{\pi}_{\delta} (\left| f(x + t) \right| + \left| f(x) \right|) F_n(t)dt \le$$ $$\le \dfrac{2M}{\pi} (\pi — \delta) \max \limits_{t \in [\delta, \pi]} F_n(t) < 2M \dfrac{\varepsilon}{8M} = \dfrac{\varepsilon}{4}. (9)$$

    Аналогично для всех $n > N$: $$\dfrac{1}{\pi} \int \limits^{-\delta}_{-\pi} \left| f(x + t) — f(x) \right| F_n(t)dt < \dfrac{\varepsilon}{4}. (10)$$

    Следовательно, для любого $x \in \mathbb{R}$ и для всех $n > N$ выполнено неравенство $\left| \sigma_n(x) — f(x) \right| < \varepsilon$ (из неравенств (7) — (10)), которое означает, что последовательность сумм Фейера $\sigma_n(x)$ равномерно сходится на $\mathbb{R}$ к функции $f(x)$.

    Спойлер

    Задан ряд $1 — 1 + 1 — 1 + \ldots$. Данный ряд расходится, но суммируется в смысле Фейера. Найдём его частичные суммы $S_{2n} = 0$, $S_{2n-1} = 1$ и средние суммы Фейера $\sigma_{2n} = \dfrac{1}{2}$, $\sigma_{2n-1} = \dfrac{n}{2n-1}$, $n = 1, 2, \ldots$. Следовательно, $\sigma_n \to \dfrac{1}{2}$.

    [свернуть]

    Литература

    Суммируемость рядов Фурье методом Фейера

    Тест по теме «Суммируемость рядов Фурье методом Фейера».

Теорема Кантора

Если функция $ f $ определена и непрерывна на сегменте $ [a,b] $, то она равномерно непрерывна на $ [a,b] $.

Доказательство

Проведем доказательство методом от противного. Пусть $ f $ не равномерно непрерывна на $ [a,b] $, тогда

$ \exists \varepsilon > 0,~ \forall \delta > 0 $ $ \exists~ x’,~x»~ \epsilon~[a,b] $, $ |x’-x»| < \delta $ : $ |f(x’) — f(x»)| \geq \varepsilon $.

Выберем последовательность $ \delta_n = \frac{1}{n} $, $ n = \overline{1,+\infty} $. Согласно допущению, найдутся такие последовательности $ \left\{x’_n \right\}_{n=1}^\infty $, $ \left\{x»_n \right\}_{n=1}^\infty $, что:

$ x’_n,~x»_n~\epsilon~[a,b] $, $ |x’_n-x»_n|<\delta_n = \frac{1}{n} $ : $ |x’-x»| < \delta $ : $ |f(x’_n) — f(x»_n)| \geq \varepsilon $.

Последовательность $ \left\{x’_n \right\}_{n=1}^\infty $ ограничена и поэтому имеет подпоследовательность $ \left\{x’_{n_{i}} \right\}_{i=1}^\infty $, которая сходится к элементу $ x_0 $, причем что $ x_0~\epsilon~[a,b] $. Тогда для подпоследовательности $ \left\{x»_{n_{i}} \right\}_{n=1}^\infty $ $ x_0~\epsilon~[a,b] $ так же является пределом.

По условию теоремы $ f $ — непрерывна на $ [a,b] $, поэтому

$ \lim\limits_{i\rightarrow \infty} f(x’_{n_{i}}) = f(x_0) = \lim\limits_{i\rightarrow \infty} f(x»_{n_{i}}) $.

Это противоречит тому, что $ |f(x’_{n_{i}}-f(x»_{n_{i}})| \geq \varepsilon > 0 $, $ \forall i = \overline{1,+\infty}$.

Это противоречие и доказывает теорему.

$ \blacksquare $

Решим таким же методом, каким было проведено доказательство теоремы, пример.

Спойлер

Доказать, что ограниченная и непрерывная функция $ f(x)=\sin{\frac{\pi}{x}} $ не является равномерно непрерывной на $ (0,1) $.

$ f(x) $ — ограничена и непрерывна. Тогда $ \exists \varepsilon > 0,~ \forall \delta > 0 $ $ \exists~ x’,~x»~ \epsilon~(0,1) $ $ |x’-x»| < \delta $: $ |f(x’) — f(x»)| \geq \varepsilon $. Выберем такие подпоследовательности $ x’_n = \frac{1}{n},~x»_n = \frac{2}{2n-1} $.

$ |f(x’) — f(x»)| $ $ = $ $ |\sin{\pi n} — \sin{\frac{(2n-1)\pi}{2}}| = 1 $.
$ |x’ — x»| = |\frac{1}{n} — \frac{2}{2n-1} $ $ = $ $ |\frac{2n-1-2n}{n(2n-1)}| $ $ = $ $ \frac{1}{n(2n-1)} $ $ \rightarrow 0 $.

$ \exists \varepsilon = 1 ~ \forall \delta $ можно выделить такие подпоследовательности $ x’_n=\frac{1}{n},~x»_n = \frac{2}{2n-1} $ $ |x’_n-x»_n| < \frac{1}{n} $.

$ n > \frac{1}{\delta} $: $ |f(x’_n)-f(x»_n)| = 1 \geq \varepsilon $. Следовательно, функция не является равномерно непрерывной на $ (0,1) $.

[свернуть]

Список использованной литературы:

Равномерная непрерывность

Определение

Пусть функция $ f $ определена на $ [a,b] $. Тогда $ f $ называется равномерно непрерывной, если $ \forall~\varepsilon>0 $ $ \exists~\delta=\delta(\varepsilon)~>0\ $ такие, что $ \forall x_1,~x_2~\epsilon~[a,b] $, $ |x_1 — x_2| < \delta $, выполняется неравенство $ | f(x_1) — f(x_2) | < \varepsilon $.

Очевидно, что равномерно непрерывная в своей области определения функция непрерывна в ней. Но обратное не всегда верно.

Рассмотрим некоторые примеры.

Спойлер

  1. Показать, что равномерная функция $ f(x)=\frac{1}{x} $ на $ (0,1) $ не является равномерно непрерывной.
    $ \forall \varepsilon > 0 $ $ \exists \delta > 0 $, что $ |\frac{1}{n} — \frac{1}{n_0}| < \varepsilon $ $ \forall~n $, что $ |x-x_0| < \delta $.
    $ |\frac{1}{n}-\frac{1}{n_0}|<\varepsilon $ $ \Rightarrow $ $ \frac{1}{n}-\varepsilon < \frac{1}{n} < \frac{1}{n_0} + \varepsilon $ $ \Rightarrow \frac{n_0}{1+\varepsilon n_0} < n < \frac{n_0}{1-\varepsilon n_0} $ $ \Rightarrow $ $ n_o — \frac{\varepsilon n^2_0}{1+\varepsilon n_0} < n < n_0 + \frac{\varepsilon n^2_0}{1-\varepsilon n_0} $ $ \rightarrow 0 $, $ n \rightarrow \infty $.
    Это значит, что $ |x-x_0| $ может быть меньше заданного положительного числа, но какое бы мы не взяли положительное $ \delta $, мы можем приближать $ n_0 $ к $ 0 $ так близко, что $ |\frac{1}{n}-\frac{1}{n_0}| > \varepsilon $, однако $ |n — n_0| < \delta $. Следовательно, функция $ f(x)=\frac{1}{x} $ является непрерывной, но не равномерно непрерывной на $ (0,1) $.

  2. Исследовать на равномерную непрерывность функцию $ f(x) = \frac{x}{4-x^2} $ на отрезке $ [-1,1] $.

    $ |f(x_1) — f(x_2)| $ $ = $ $ |\frac{x_1}{4-x_1^2} — \frac{x_2}{4-x_2^2}| $ $ = $ $ |\frac{4+x_1x_2}{(4-x_1^2)(4-x_2^2)}| \cdot |x_1-x_2| $.

    $ |\frac{4+x_1x_2}{(4-x_1^2)(4-x_2^2)}| < \frac{4+1}{3 \cdot 3} $ $ = \frac{5}{9} < 1 $.

    Зафиксируем произвольное $ \varepsilon > 0 $ и положим $ \delta = \varepsilon $.

    Тогда $ |x_1 — x_2| < \delta$, $ \forall x_1,~x_2 $ $ (x_1,~x_2~\epsilon ~ [-1,1]) $ $ | f(x_1) — f(x_2) | < \varepsilon $.

    Следовательно, функция $ f(x) $ на $ [-1,1] $ равномерно непрерывна.

  3. Доказать, что функция $ f(x)=\sqrt{x} $ равномерно непрерывна на $ [1,+\infty] $.

    По теореме Лагранжа $ \forall x_1\geq 1 $ и $ \forall x_2\geq 1 $

    $ |f(x_2)-f(x_1)| $ $ = $ $ |f(\xi)||x_2-x_1| $ $ = $ $ \frac{1}{2\sqrt\xi)}|x_2-x_1|<\frac{1}{2}|x_2-x_1| $

    Если для $ \varepsilon>0 $ выбрать любое $ \delta $, $ 0<\delta\leq2\varepsilon $, то при $ |x_2-x_1|<\delta $ выполняется $ ~ $ $ |f(x_2)-f(x_1)|<\varepsilon $, иначе говоря, $ f(x)=\sqrt{x} $ является равномерно непрерывной на $ [1,+\infty] $.

[свернуть]

Список использованной литературы: