М1663. Взаємне розташування діагоналей опуклого чотирикутника

Задача із журналу «Квант» (1998 рік. №6)

Умова

Бісектриси вписаного чотирикутника утворюють у перетині опуклий чотирикутник. Доведіть, що діагоналі отриманого чотирикутника перпендикулярні.

С.Берлов

Розв’язок

Продовжимо протилежні сторони вихідного чотирикутника $ABCD$ до перетину в точках $P$ і $Q$ (див. рисунок). Доведемо спочатку, що бісектриса $PF$ кута $P$ перпендикулярна бісектрисі $QE$ кута $Q.$

Оскільки чотирикутник $ABCD$ — вписаний, зовнішній кут $DCQ$ дорівнює внутрішньому куту в протилежній вершині $A.$ Так як пряма $QE$ — бісектриса кута $Q$, то кути трикутника $AQE$ відповідно дорівнюють кутам трикутника $CQG.$ Отже, $\angle CGQ = \angle AEQ$. Але кути $CGQ$ і $PGE$ рівні як вертикальні. Тому $\angle PEG = \angle PGE$ і $\triangle PEG$ — рівнобедрений.

Отже, бісектриса кута $P$ є серединним перпендикуляром до відрізка $EG,$ тобто бісектриса $PF$ кута $P$ перпендикулярна бісектрисі $QE$ кута $Q.$

Звідси легко випливає твердження задачі, оскільки діагоналі чотирикутника, утвореного на бісектрисах чотирикутника $ABCD,$ лежать на бісектрисах $PF$ і $QE.$

У випадку, коли будь-які дві протилежні сторони чотирикутника $ABCD$ паралельні, твердження задачі випливає із симетричності креслення.

С.Берлов

М641. Задача о шестиугольнике и пересекающем его круг.

Задача из журнала «Квант» М641(1980, выпуск №9)

Задача:

Дан правильный шестиугольник $ABCDEF$ с центром $O$. Точки $M$ и $N$ — середины сторон  $CD$ и $DE$. Прямые  $AM$ и $BN$ пересекаются в точке $L$.

Докажите, что:

а) треугольник $ABL$ и четырехугольник $DMLN$ имеют равные площади;

б) $\widehat{ALO}=\widehat{OLN}=60^\circ$;

в) $\widehat{OLD}=90^\circ$.

Решение:

Все утверждения задачи не трудно получить из одного наблюдения: при повороте на $60^\circ$ вокруг центра $O$ четырехугольник $AMCB$ отображается на четырехугольник $BNDC$.

Действительно, при повороте $R_O^{60^\circ}$ (против часовой стрелки) точка $A$ переходит в точку $B$, точка $B$ — в точку $C$, сторона $CD$ отображается в сторону $DE$, так что середина $M$ стороны $CD$ переходит в середину $N$ стороны $DE$ (смотри рисунок). Следовательно, четырехугольники $AMCB$ и $BNDC$ конгруэнтны, так что площади их равны. Вычитая из этих равных площадей площадь четырехугольника $BCML$, получим равные площади, то есть треугольник $ABL$ и четырехугольник $DMLN$ равновелики.

Так как при повороте $R_O^{60^\circ}$ луч $AM$ отображается на луч $BN$, угол между направлениями этих лучей равен углу поворота, то есть $\widehat{ALB}=60^\circ$. Следовательно, $\widehat{ALN}=120^\circ$.Приведем два доказательства того , что $\widehat{ALO}=\widehat{OLN}=60^\circ$ и $\widehat{OLD}=90^\circ$.

$1^\circ$. Воспользуемся таким очевидным фактом: если две прямые, пересекающиеся в точке $K$, равноудалены от точки $P$, то прямая $PK$ служит биссектрисой угла между этими прямыми (содержащего точку $P$). Поскольку точка $O$ равноудалена от прямых $AM$ и $BN$, $OL$ — биссектриса угла $ALN$, то есть $\widehat{ALO}=\widehat{OLN}=60^\circ$. Поскольку точка $D$ удалена от прямых $AM$ и $BN$ одинаково (на такое же расстояние, как $C$ — от прямой $AM$). $\widehat{NLD}=\widehat{DLM}=30^\circ$, то есть $\widehat{OLD}=90^\circ$.

$2^\circ$. Около четырехугольника $DMON$ можно описать окружность, так как углы  при его вершинах $M$ и $N$ — прямые. Тогда $L$ также принадлежит этой окружности. Это следует из того, что в четырехугольнике $DMLN$ сумма углов при вершинах $D$ и $L$ равна $180^\circ$. Заметив, что $\widehat{ODN}=60^\circ$, применим теорему о вписанном угле. Тогда получим $\widehat{OLN}=\widehat{ODN}=60^\circ$ и $\widehat{OLD}-\widehat{OMD}=90^\circ$.

Э.Готман

М698. Задача о центрах прямоугольников

Условие

На сторонах [latex]a, b, c, d[/latex] вписанного в окружность четырехугольника «наружу» построены прямоугольники размерами [latex]a\times c, b\times d,[/latex][latex]c\times a, d\times b[/latex]. Докажите, что центры этих прямоугольников являются вершинами а)параллелограмма, б)прямоугольника.

Решение


а) Пусть [latex]M, P, N, Q[/latex] — центры прямоугольников, построенных на сторонах [latex]AB, BC, CN, DA[/latex] вписанного четырехугольника [latex]ABCD[/latex] (см. рисунок).
Поскольку в четырехугольнике, вписанном в окружность, суммы противоположных углов равны [latex]180\textdegree[/latex] , а прямоугольники, построенные на противоположных сторонах, конгруэнтны, то [latex]\angle MBP = \angle NDQ[/latex] и [latex]\angle NCP = \angle MAQ[/latex] (мы рассматриваем углы, меньшие [latex]180\textdegree[/latex]). Таким образом, треугольник [latex]MBP[/latex] подобен [latex]NDC[/latex] и треугольник [latex]NCP[/latex] подобен [latex]MAQ[/latex]. Отсюда [latex]\mid MP \mid = \mid NQ \mid[/latex] и [latex]\mid NP \mid = \mid MQ \mid[/latex], а это означает, что четырехугольник [latex]MPNQ[/latex] — параллелограмм.
б) Можно считать, что сторона [latex]MQ[/latex] параллелограмма видна из точки [latex]A[/latex] изнутри параллелограмма, сторона [latex]PN[/latex] видна из точки [latex]C[/latex] снаружи и, аналогично, сторона [latex]MP[/latex] видна из точки [latex]B[/latex] изнутри, а сторона [latex]NQ[/latex] из точки [latex]D[/latex] видна снаружи. Тогда расположение всех отрезков и треугольников будет таким, как показано на рисунке. Докажем, что, [latex]\angle MPN + \angle NQM = 180\textdegree[/latex] (отсюда будет следовать, что [latex]\angle MPN = \angle NQM = 90\textdegree[/latex]). Эта сумма, очевидно, равна [latex]\angle BPC + \angle DQA = 180\textdegree[/latex], поскольку [latex]\angle BPM = \angle DQN[/latex], а [latex]\angle CPN = \angle AQM[/latex].

М664. О равенстве площадей

Задача из журнала «Квант» (1981 год, 1-й выпуск)

Условие

Дан четырехугольник $ABCD$ площади $S$. Обозначим точки пересечения высот треугольников $ABC$, $BCD$, $CDA$, $DAB$ через $H,$ $K,$ $L,$ $M$ соответственно. Докажите, что площадь четырехугольника $HKLM$ тоже равна $S$.

Решение

Самое простое аналитическое решение этой задачи получается с помощью операции псевдоскалярного произведения векторов: $\vec{a}\wedge\vec{b}=\mid\vec{a}\mid\mid\vec{b}\mid\sin\phi$, где $\phi$ — угол, на который нужно повернуть вектор $\vec{a}$ против часовой стрелки, чтобы его направление совпало с направлением вектора $\vec{b}$. Геометрический смысл числа $\vec{a}\wedge\vec{b}$ — ориентированная, площадь параллелограмма, построенного на векторах $\vec{a}$ и $\vec{b}$ (рис. 1). Нужные нам свойства:

Рис. 1.а. $\vec{a}\wedge\vec{b} =2S_{\triangle AOB}$, если $\triangle AOB$ ориентирован положительно— против часовой стрелки.
Рис.1.б. $\vec{a}\wedge\vec{b} =-2S_{\triangle AOB}$, если $\triangle AOB$ ориентирован отрицательно
  1. $(\vec{a}+\vec{b})\wedge\vec{c}=\vec{a}\wedge\vec{c}+\vec{b}\wedge\vec{c}$
  2. $\vec{a}\wedge\vec{b}=-\vec{b}\wedge\vec{a}$
  3. $\vec{a}\wedge\vec{b}=0$, если векторы $\vec{a}$ и $\vec{b}$ коллинеарны. Следуют из того, что $\vec{a}\wedge\vec{b}$ равно скалярному произведению вскторов $\vec{b}$ и $R^{90^{\circ}}(\vec{a})$.

Удобно ввести «симметричные» обозначения: пусть $A_{1}A_{2}A_{3}A_{4}$ — данный четырехугольник, $H_{1}, H_{2}, H_{3} и H_{4}$ — точки пересечений высот треугольников $A_{2}A_{3}A_{4}, A_{3}A_{4}A_{1}$, $A_{4}A_{1}A_{2}$ и $A_{1}A_{2}A_{3}$, соответственно, а $\vec{a_{i}}$ и $\vec{h_{i}}$ — векторы, идущие из фиксированной точки $O$ в $A_{i}$ и $H_{i}$ $(i= 1, 2, 3, 4)$.

Докажем, что треугольники $A_{1}A_{2}A_{3}$ и $H_{1}H_{2}H_{3}$ равновелики (имеют одинаковую площадь) и одинаково ориентированы. Поскольку удвоенная площадь $\triangle$$A_{1}A_{2}A_{3}$ (с учётом ориентации) равна $\overrightarrow{A_{1}A_{2}}\wedge\overrightarrow{A_{1}A_{3}}=(\vec{a_{2}}-\vec{a_{1}})\wedge(\vec{a_{3}}-\vec{a_{1}})=\vec{a_{1}}\wedge\vec{a_{2}}+\vec{a_{2}}\wedge\vec{a_{3}}+\vec{a_{3}}\wedge\vec{a_{1}},$ мы должны доказать равенство \begin{equation} \label{eq:first} \vec{a_{1}}\wedge\vec{a_{2}}+\vec{a_{2}}\wedge\vec{a_{3}}+\vec{a_{3}}\wedge\vec{a_{1}}=\vec{h_{1}}\wedge\vec{h_{2}}+\vec{h_{2}}\wedge\vec{h_{3}}+\vec{h_{3}}\wedge\vec{h_{1}}.\end{equation} Для этого мы используем лишь тот факт, что $\left[A_{i}H_{j}\right]\parallel\left[A_{j}H_{i}\right]$ при всех $i \neq j$. Скажем, $\left[A_{1}H_{2}\right]\parallel\left[A_{2}H_{1}\right]$, поскольку они перпендикулярны $ \left[A_{3}A_{4}\right] $; поэтому $(\vec{a_{1}}-\vec{h_{2}})\wedge(\vec{a_{2}}-\vec{h_{1}})=0$ Сложив три равенства:$$\vec{a_{1}}\wedge\vec{a_{2}}-\vec{h_{1}}\wedge\vec{h_{2}}=\vec{a_{1}}\wedge\vec{h_{1}}-\vec{a_{2}}\wedge\vec{h_{2}}.$$ $$\vec{a_{2}}\wedge\vec{a_{3}}-\vec{h_{2}}\wedge\vec{h_{3}}=\vec{a_{2}}\wedge\vec{h_{2}}-\vec{a_{3}}\wedge\vec{h_{3}}$$ $$\vec{a_{3}}\wedge\vec{a_{1}}-\vec{h_{3}}\wedge\vec{h_{1}}=\vec{a_{3}}\wedge\vec{h_{3}}-\vec{a_{3}}\wedge\vec{h_{1}}$$

получим $\eqref{eq:first}$.

Разумеется, так же доказывается вообще, что треугольники $A_{i}A_{j}A_{k}$ и $H_{i}H_{j}H_{k}$, равновелики и одинаково ориентированы (для всех $i \neq j \neq k$ ); в частности, это относится к треугольникам $A_{3}A_{4}A_{1}$ и $H_{3}H_{4}H_{1}$. Отсюда, следует равенство площадей четырехугольников $A_{1}A_{2}A_{3}A_{4}$ и $H_{1}H_{2}H_{3}H_{4}$.

Более того, оба эти четырёхугольника будут одновременно либо (а) выпуклыми, либо (б) невыпуклыми, но несамопересекающимися, либо (в) самопересекающимися: если все четыре треугольника $A_{1}A_{2}A_{3}, A_{2}A_{3}A_{4}, A_{3}A_{4}A_{1}, A_{4}A_{1}A_{2}$ имеют одинаковую ориентацию, то (а), если один отличается по ориентации от трех других — (б); если «счет ничейный» 2:2 — (в).

Если бы мы попытались перевести это решение на элементарно геометрический язык, получилась бы громоздкая картина из множеств параллелограммов, очевидные соотношения между площадями которых запутаны из-за особенностей расположения. Более элегантное геометрическое решение (требующее, однако, некоторых вычислений: в частности оно использует формулу $\tan\alpha+\tan\beta=(1-\tan\alpha\tan\beta){\tan(\alpha+\beta)})$ основано на полезных соотношениях, показанных на рисунке 2, где $H$ — точка пересечения высот треугольника $ABC$. $O$ — центр описанной вокруг него окружности, $K$ — середина стороны $AB$).

Рис.2. $\overrightarrow{HC}=2\overrightarrow{KO}=\cot\hat{C}\times R^{90^{\circ}}(\overrightarrow{AB})$

На этом пути сразу ясно, что для четырёхугольника $A_{1}A_{2}A_{3}A_{4}$, вписанного в окружность, «ортоцентрический» четырёхугольник $H_{1}H_{2}H_{3}H_{4}$ будет ему не только равновелик, но и конгруэнтен (в общем случае, как следует из равенства, площадей треугольников $A_{i}A_{j}A_{k}$ и $H_{i}H_{j}H_{k}$ эти четырёхугольники аффинно эквивалентны, то есть один получается из другого линейным преобразованием координат).

Б. Батырев. Н. Васильев. В. Трофимов

М1730. Выпуклый четырехугольник

Задача из журнала «Квант» (2000 год, 6 выпуск)

Условие задачи

Продолжения противоположных сторон произвольного выпуклого четырехугольника [latex]ABCD[/latex] пересекаются в точках [latex]M[/latex] и [latex]K[/latex]  $(рис.1)$. Через точку [latex]O[/latex] пересечения его диагоналей проводится прямая, параллельная [latex]MK[/latex]. Докажите, что отрезок этой прямой, заключенный внутри четырехугольника, делится точкой  [latex]O[/latex] пополам.

Решение

Проведем  через точку [latex]D[/latex] прямую [latex]l[/latex] (сделайте чертеж самостоятельно), параллельную [latex]KM[/latex]; пусть  [latex]E[/latex] и [latex]F[/latex] — точки пересечения [latex]l[/latex] с прямыми [latex]BC[/latex] и [latex]BA[/latex] соответственно.  Пусть для определенности прямая, проходящая через [latex]O[/latex] параллельно [latex]KM[/latex] и [latex]l[/latex] пересекает стороны [latex]AB[/latex] и [latex]CD[/latex] четырехугольника. В этом случае для решения задачи надо доказать, что точка [latex]O[/latex] лежит на медиане [latex]KL[/latex] треугольника [latex]DKF[/latex]. Мы докажем, что [latex]O[/latex] — точка пересечения медиан [latex]KL[/latex] и [latex]MN[/latex] треугольников [latex]DKF[/latex] и [latex]DME[/latex] соответственно. Обозначим точку пересечения медиан [latex]KL[/latex] и [latex]MN[/latex] через [latex]X[/latex].

Докажем вначале, что [latex]X[/latex] лежит на [latex]BD[/latex], т. е. что прямые [latex]DX[/latex] и [latex]BD[/latex] совпадают. Для этого докажем, что они делят отрезок [latex]KM[/latex] в одном и том же соотношении.

Пусть  [latex]Y[/latex] — точка пересечения [latex]DX[/latex] и [latex]KM[/latex]. Имеем [latex]\frac {\displaystyle KY}{ \displaystyle LD} = \frac{\displaystyle XY}{\displaystyle DX}[/latex] (поскольку треугольники [latex]XYK[/latex] и [latex]XDL[/latex] подобны), [latex]\frac{ \displaystyle MY}{\displaystyle DN}\ = \frac{\displaystyle XY}{\displaystyle DX}\[/latex]. Поэтому [latex]\frac{\displaystyle KY}{\displaystyle MY}\ = \frac{\displaystyle LD}{\displaystyle DN}\[/latex]. Аналогично доказывается, что [latex]BD[/latex] делит [latex]KM[/latex] в отношении [latex]\frac{\displaystyle FD}{\displaystyle DE}\[/latex]. Но [latex]FD = 2LD[/latex], [latex]DE = 2DN[/latex].

Осталось доказать, что [latex]X[/latex] лежит на отрезке [latex]AC[/latex]. Другими словами, что [latex]KL[/latex] и [latex]MN[/latex] делят отрезок [latex]AC[/latex] в одном и том же отношении.

Лемма 1.
[latex]\frac{\displaystyle VS}{\displaystyle BV}\ = \frac{\displaystyle AS}{\displaystyle AC}\[/latex], где [latex]S[/latex] — точка на стороне [latex]AC[/latex] треугольника [latex]ABC[/latex], [latex]V[/latex] — точка пересечения прямой [latex]BS[/latex] с медианой [latex]AN[/latex] этого треугольника.

Рассмотрим точку [latex]T[/latex] отрезка [latex]BC[/latex] такую, что [latex]ST[/latex] [latex]||[/latex] [latex]AN[/latex]. Из теоремы Фалеса следует, что [latex]\frac{\displaystyle VS}{\displaystyle BV}\ = \frac{\displaystyle NT}{\displaystyle BN}\ = \frac{\displaystyle NT}{\displaystyle NC}\ = \frac{\displaystyle AS}{\displaystyle AC}\ [/latex].

Лемма 2.
[latex]\frac{\displaystyle VS}{\displaystyle UV} = \left(\frac{\displaystyle AS}{\displaystyle AU}\right) \cdot \left (\frac{\displaystyle AB}{\displaystyle AC} \right )[/latex], где [latex]U[/latex] и [latex]S[/latex] — точки на сторонах [latex]AB[/latex] и [latex]AC[/latex] треугольника [latex]ABC[/latex] соответственно, а [latex]V[/latex] — точка пересечения прямой [latex]US[/latex] с медианой [latex]AN[/latex] этого треугольника.

На стороне [latex]AC[/latex] возьмем точку [latex]Z[/latex] такую, что [latex]UZ[/latex] [latex]||[/latex] [latex]BC[/latex].  По лемме 1 имеем [latex]\frac{\displaystyle VS}{\displaystyle UV}\ = \frac{\displaystyle AS}{\displaystyle AZ}\[/latex], а по теореме Фалеса [latex]\frac{\displaystyle AC}{\displaystyle AB}\ = \frac{\displaystyle AZ}{\displaystyle AU}\[/latex]. Осталось перемножить эти равенства.

Доказанные утверждения позволяют завершить решение задачи. Именно, по лемме 2 медиана [latex]KL[/latex] делит отрезок [latex]AC[/latex] (считая от [latex]C[/latex])  в отношении [latex]m = \left(\frac{\displaystyle CK}{\displaystyle KD}\right) \cdot \left (\frac{\displaystyle KF}{\displaystyle AK} \right )[/latex], а медиана [latex]MN[/latex] — в отношении [latex]n = \left(\frac{\displaystyle MC}{\displaystyle ME}\right) \cdot \left (\frac{\displaystyle MD}{\displaystyle MA} \right )[/latex]. Но [latex]\frac{\displaystyle MC}{\displaystyle ME}\ = \frac{\displaystyle KC}{\displaystyle KD}\[/latex],  [latex]\frac{\displaystyle KF}{\displaystyle AK}\ = \frac{\displaystyle MD}{\displaystyle MA}\[/latex]. Следовательно, [latex]m = n[/latex].
Утверждение задачи доказано.

Замечание. Вот ещё одно, более естественное, хотя и несколько более сложное, доказательство леммы 2.

Проведем через [latex]V[/latex] параллельные [latex]AS[/latex] и [latex]AU[/latex] прямые $(рис. 2)$.

Имеем: [latex]\frac{\displaystyle x}{\displaystyle y} = \frac{\displaystyle AC}{\displaystyle AB}[/latex] (это характеристическое свойство точек медианы!). Теорема Фалеса дает: [latex]\frac{\displaystyle VS}{\displaystyle y} = \frac{\displaystyle US}{\displaystyle AU}[/latex], [latex]\frac{\displaystyle x}{\displaystyle UV} = \frac{\displaystyle AS}{\displaystyle US}[/latex]. Перемножая эти два равенства, получаем
[latex]\frac{\displaystyle VS}{\displaystyle UV} = \left(\frac{\displaystyle AS}{\displaystyle AU}\right) \cdot \left (\frac{\displaystyle y}{\displaystyle x} \right ) = \left (\frac{\displaystyle AS}{\displaystyle AU} \right ) \cdot \left (\frac{\displaystyle AB}{\displaystyle AC} \right )[/latex].
Лемма доказана.

М. Волкевич, В. Сендеров