M1817. Окружности вписанные в четырёхугольник

Задача из журнала «Квант» (2002 год, 6 выпуск)

Условие

Четырехугольник с перпендикулярными диагоналями вписан в квадрат. Диагонали и стороны четырехугольника разделили квадрат на 8 треугольников, попеременно окрашенных в красный и синий цвет (рис.1).

рис 1

Докажите, что сумма радиусов окружностей, вписанных в красные треугольники равна сумме радиусов окружностей, вписанных в синие треугольники.

Решение

Сначала два вспомогательных факта.

  1. Диаметр вписанной в прямоугольный треугольник окружности равен разности между суммой его катетов и гипотенузой, т.е. $2r = a + b — c.$ Обоснование этого полезного утверждения можно усмотреть из рисунка

  1. Два взаимно перпендикулярных отрезка разделили квадрат на четыре четырехугольнька. Тогда сумма периметров любых двух несоседних из них равна сумме периметров двух других (рис.3).
рис 3

Обоснуем это. Один из разделяющих отрезков перенесем параллельно себе так, чтобы он прошел через центр квадрата; при этом сумма периметров несоседних четырехугольников останется прежней. То же самое сделаем со вторым отрезком. Но два отрезка, взаимно перпендикулярные и проходящие через центр квадрата, делят его на четыре равных четырехугольника. Теперь рассуждение легко закончить самостаятельно.

Вернемся к условию задачи. На основании утверждения 2 можно заключить, что сумма длин всех катетов красных треугольников равна сумме длин всех катетов синих треугольников. К этому можно добавить, что сумма длин всех гипотенуз красных треугольников равна сумме длин всех гипотенуз синих треугольников. Откуда используя утверждение 1, делаем вывод, что сумма радиусов окружностей, вписанных в красные треугольники, равна сумме радиусов окружностей, вписанных в синие треугольники.

В. Произволов

М1345. Задача об окружности пересекающей гиперболу и правильном треугольнике

Задача из журнала «Квант» (1992 год, 5 выпуск)

Условие

На гиперболе $y =\displaystyle \frac{1}{x}$ взяты две точки $M(x_0;y_0)$ и $N(-x_0;-y_0)$, симметричные относительно начала координат. Окружность с центром $M$, проходящая через точку $N$, пересекает гиперболу ещё в трех точках. Докажите, что эти точки лежат в вершинах правильного треугольника.

Решение

Для решения данной задачи вам потребуется следующая

Лемма. Пусть точки $A, B, C$ лежат на окружности с центром $M$. Тогда треугольник $ABC$ является правильным тогда и только тогда, когда $\overrightarrow{\mkern -3mu OA\mkern 3mu}+\overrightarrow{\mkern -3mu OB\mkern 3mu}+\overrightarrow{\mkern -3mu OC\mkern 3mu}=3 \mkern 3mu \overrightarrow{\mkern -3mu OM\mkern 3mu}.$

Из данного равенства сразу следует, что $\overrightarrow{\mkern -3mu MA\mkern 3mu}+\overrightarrow{\mkern -3mu MB\mkern 3mu}+\overrightarrow{\mkern -3mu MC\mkern 3mu}=\overrightarrow{0}$, но это означает, что точка $M$ совпадает с центром тяжести треугольника $ABC$, т.е. с точкой пересечения его медиан (убедитесь в этом). Таким образом, длины всех всех медиан треугольника $ABC$ равны. Отсюда следует что треугольник правильный. (Обратное утверждение очевидно.)

Теперь приступим к решению задачи. Пусть координаты точек $A, B, C$ и $M$ равны соответственно $(x_A;y_A), (x_B;y_B), (x_C;y_C)$ и $(x_M;y_M)$. По условию,$$  \begin{cases}xy=1,\\(x-x_0)^{2}+(y-y_0)^{2}=4({x_0}^2+{y_0}^2).\end{cases}  $$Подставив $y=\displaystyle \frac{1}{x}$ из первого уравнения системы во второе, после несложных преобразований получаем уравнение для $x$:$$x^{4}-2{x_0}^3+\dots=0$$

Мы выписали только два старших члена, поскольку остальные слагаемые нас не интересуют. По теореме Виета сумма всех корней этого уравнения, включая корень $(-x_0)$, равна $2x_0$. Поэтому $x_{A}+x_{B}+x_{C}=3x_0$. Аналогично $y_{A}+y_{B}+y_{C}=3y_0$.

Последние равенства означают, что $$\overrightarrow{\mkern -3mu OA\mkern 3mu}+\overrightarrow{\mkern -3mu OB\mkern 3mu}+\overrightarrow{\mkern -3mu OC\mkern 3mu}=3 \mkern 3mu \overrightarrow{\mkern -3mu OM\mkern 3mu},$$ где $O$ начало координат. Осталось воспользоваться доказанной нами леммой.

В.Сендеров

M1276. О высотах треугольников, пересекающихся в одной точке

Задача из журнала «Квант» (1991 год, 9 выпуск)

Условие

Для данной хорды $MN$ окружности рассматриваются треугольники $ABC$, основаниями которых являются диаметры $AB$ этой окружности, не пересекающие $MN$, а стороны $AC$ и $BC$ проходят через концы $M$ и $N$ хорды $MN$. Докажите, что высоты всех таких треугольников $ABC$, опущенные из вершины $C$ на сторону $AB$, пересекаются в одной точке.

Доказательство

Точки $M$ и $N$ — основания высот треугольника $ABC$, опущенных из вершин $A$ и $B$, поэтому третья высота проходит через точку $H$ их пересечения, причем точки $C$, $M$, $N$ и $H$ лежат на одной окружности $δ$ с диаметром $CH$. Пусть $P$ — центр этой окружности. Заметим, что при движении диаметра $AB$ величина угла $C$ треугольника остаётся неизменной, — она измеряется полуразностью постоянных по величине дуг  $AB$ и $MN$ (см. рисунок). Поскольку хорда $MN$ неподвижна, остаётся неизменной и окружность $δ$ (по которой движутся точка $C$ и диаметрально противоположная ей точка $H$), а тем самым и её центр $P$: диаметр $CH$ — участок интересующей нас высоты — просто вращается вокруг точки $P$.

Cycle

 Е. Куланин

M648. О диагоналях вписанного четырехугольника

Задача из журнала «Квант» (1980 год, 10 выпуск)

Условие

Докажите, что если диагонали вписанного четырехугольника перпендикулярны, то середины его сторон и основания перпендикуляров, опущенный из точки пересечения его диагоналей на стороны, лежат на одной окружности.

Решение

Прежде всего заметим, что если $ABCD$ — вписанный четырехугольник с перпендикулярными диагоналями (рис. 1), то подобные треугольники $AKB$ и $CKD$ ($K$ — точка пересечения диагоналей) расположены таким образом, что продолжение высоты, опущенной на гипотенузу одного из них, является медианой другого. (Этот факт, немедленно вытекающий из равенства отмеченных на рисунке 1 углов, по существу уже использовался в решении задач M546 и M592 — см. «Квант», 1980, № 1, 8.)

Рисунок 1

Далее: середины $L$, $P$, $M$, $Q$ сторон четырехугольника $ABCD$, являясь вершинами прямоугольника (рис. 2), лежат на одной окружности. Покажем, что центр $O$ этой окружности делит пополам отрезок $OK$ ($O$ — центр окружности, в которую вписан наш четырехугольник).

Рисунок 2

Для этого достаточно, например, показать, что четырехугольник $LKMO$ — параллелограмм. Поскольку $LK$ — медиана треугольника $AKB$, ее продолжение является высотой треугольника $CKD$, то есть $LK \perp DC$. Но и $OM \perp DC$ (диаметр, проходящий через середину хорды), поэтому отрезки $LK$ и $OM$ параллельны. Аналогично доказывается параллельность отрезков $LO$ и $KM$.

Теперь для окончания решения задачи нам достаточно установить, например, что $|O_1M| = |O_1H|$, где $H$ — основание перпендикуляра, опущенного из точки $K$ на сторону $CD$. Но это следует из того, что $O_1$ — середина гипотенузы $LM$ прямоугольного треугольника $LMH$ (рис. 3).

Рисунок 3

Итак, все восемь точек, упомянутых в условиях задачи, лежат на одной окружности. Интересно, что радиус этой «окружности восьми точек» целиком определяется радиусом $R$ данной окружности и величиной $|OK| = a$. В самом деле, искомый радиус равен половине длины $|LM|$, а $$|LM|^2 = |LP|^2 + |PM|^2 = $$ $$= \frac{1}{4}\left(|AC|^2 + |BD|^2\right) =$$ $$= \frac{1}{4}\left(|AK| + |KC|\right)^2 + \left(|BK| + |KD|)^2\right) =$$ $$= \frac{1}{4}\left(|AB|^2 + |CD|^2 + 2\left(|AK| \cdot |KC| + |BK| \cdot |KD|\right)\right) =$$ $$= \frac{1}{4}\left(|AB|^2 + |CD|^2 + 4\left(R^2 — a^2\right)\right) =$$ $$= \frac{1}{4}\left(4R^2 + 4\left(R^2 — a^2\right)\right) = 2R^2 — a^2.$$

(В этой вкладке мы вначале воспользовались тем, что произведение длин отрезков хорд, пересекающихся в одной и той же точке, постоянно: $$|AK| \cdot |KC| = |BK| \cdot |KD| = (R — a)(R + a)$$ (рис. 4),

Рисунок 4

а затем, сообразив, что $$90^{\circ} = \widehat{BCA} + \widehat{DBC} = \frac{\overset{\smile}{AB} + \overset{\smile}{CD}}{2}$$ и дополнив $\overset{\smile}{CD}$ до полуокружности дугой конгруэнтной $\overset{\smile}{AB}$ получили равенство $$|AB|^2 + |CD|^2 = (2R)^2 = 4R^2$$ см. рисунок 5)

Рисунок 5

Наметим другое решение. Сделаем гомотетию наших восьми точек с центром в точке $K$ и коэффициентом $2$. Тогда утверждение задачи М648 превращается в такую теорему:

Пусть два взаимно перпендикулярных луча с накалом в точке $K$ внутри данной окружности, вращаясь вокруг $K$, пересекают окружность в переменных точках $P$ и $Q$. Тогда четвертая вершина $T$ прямоугольника $PKQT$ (точка симметричная точке $K$ относительно середины $|PQ|$), а также точка $S$, симметричная точке $K$ относительно прямой $PQ$, двигаются по окружности концентричной с данной (рис. 6).

Второй факт (про $S$) следует из первого, так как $S$ симметрична точке $T$ относительно серединного перпендикуляра к $|PQ|$, а первый (про $T$) установлен в решении задачи М539 («Квант», 1979, № 11)

Рисунок 6

Эта «теорема о восьми точках» допускает следующее стереометрическое обобщение:

Если три взаимно перпендикулярных луча с началом в фиксированной точке $K$ внутри данной сферы, вращаясь вокруг $K$, пересекают сферу в переменных точках $A$, $B$ и $C$, то точка пересечения медиан треугольника $ABC$ и основание перпендикуляра, опущенного из $K$ на плоскость $ABC$, двигаются по сфере, центр которой находится в точке $O_1$ отрезка $OK$ ($O$ — центр данной сферы) такой, что $|O_1K| = \frac{1}{3}|OK|,$ а радиус равен $\frac{1}{3}\sqrt{3R^2 — 2a^2}$, где $a = |OK|,$ $R$ — радиус данной сферы.

Доказать это можно, например, следующим образом.

Пусть $D$ — вершина параллелепипеда, определенного отрезками $KA$, $KB$ и $KC$, диагонально противоположная к $K$. Все точки $D$ лежат на сфере с центром в той же точке $O$, что у исходной сферы, и радиусом $\sqrt{3R^2 — 2a^2}$ (см. решение задачи М639 — «Квант», 1969, № 11). При гомотетии с центром $K$ и коэффициентом $\frac{1}{3}$ точка $D$ будет все время переходить в точку пересечения медиан треугольника $ABC$ (докажите!), а точка $O$ перейдет в точку $O_1$. Таким образом, точка пересечения медиан треугольника $ABC$ все время лежит на указанной сфере.

Осталось показать, что проекция точки $K$ на плоскость треугольника $ABC$ также все время лежит на этой сфере. Поскольку отрезки $KA$, $KB$ и $KC$ взаимно перпендикулярны, проекция точки $K$ совпадет с точкой $H$ пересечения высот треугольника $ABC$. Утверждение будет доказано, если мы, например, получим равенство $|O_1H| = |O_1M|$, где $M$ — точка пересечения медиан треугольника $ABC$. Для этого заметим, что центр сферы $O$ проектируется в центр $Q$ описанной вокруг треугольника $ABC$ окружности, и воспользуемся таким известным фактом: точки $Q$, $M$ и $H$ лежат на одной прямой (прямой Эйлера), точка $M$ — между точками $Q$ и $H$, причем $2|QM| = |MH|$. (Если этот факт вам неизвестен, докажите его.) Остальное легко следует из рисунка 7: поскольку $|O_1K| = \frac{1}{3}|OK|$, а $|QM| = \frac{1}{3}|QH|$, точка $O_1$ проектируется в середину отрезка $MH$, то есть $O_1$ равноудалена от $M$ и $H$.

Рисунок 7
И. Шарыгин

М671. Задача о вписанном четырёхугольнике


Задача из журнала «Квант» М671(1981, выпуск №3)

Задача:

Во вписанном четырёхугольнике одна диагональ делит вторую пополам. Докажите, что квадрат длины первой диагонали равен половине суммы квадратов длин всех сторон четырёхугольника.

Решение:

Пусть $a, b, c, d$ — длины сторон четырёхугольника $ABCD$, $|BO| = |OD|, |AC| = l$ (см. рисунок). По теореме косинусов

\begin{equation}
l^2 = a^2 + b^2 — 2ab\cdot \cos\hat{B}
\end{equation}
\begin{equation}
l^2 = c^2 + d^2 + 2cd\cdot \cos\hat{B}
\end{equation}

($\hat{D} = 180^\circ — \hat{B}$, поскольку четырёхугольник $ABCD$ вписан в окружность).

Легко заметить, что треугольники $ABC$ и $ADC$ равновелики: $S_{ABC} = S_{ADC}$ — они имеют общее основание $AC$ и равные по длине высоты, опущеные на это основание. Поэтому $\frac{1}{2}ab\cdot \sin\hat{B} = \frac{1}{2}cd\cdot \sin(180^\circ — \hat{B})$, то есть $ab = cd$. Складывая $(1)$ и $(2)$, получаем требуемое.