Через точку внутри сферы проведены три попарно перпендикулярные плоскости, которые рассекли сферу на 8 криволинейных треугольников. Эти треугольники закрашены в шахматном порядке в черный и белый цвета (рис.1). Докажите, что площадь черной части сферы равна площади ее белой части.
Решение
Докажем равносоставленность черной и белой частей сферы, тем самым будет доказана их равновеликовость. Обозначим через $\alpha$, $\beta$ и $\gamma$ плоскости, рассекающие сферу, а через $\overline{\alpha}$, $\overline{\beta}$ и $\overline{\gamma}$ — плоскости, соответственно симметричные им относительно центра сферы. Эти шесть плоскостей рассекают сферу на попарно равные куски так, что один из них белый, а другой черный в каждой паре. Однако этот факт легко услышать, но труднее увидеть.
Чтобы увидеть было легче, будем следовать принципу постепенности. Между плоскостями $\alpha$ и $\overline{\alpha}$, которые будем считать горизонтальными, расположен сферический пояс, выше и ниже которого располагаются две сферические «шапки». Заметим, что плоскости $\beta$, $\overline{\beta}$, $\gamma$ и $\overline{\gamma}$ разрезают эти шапки на части так, что каждая белая часть одной шапки симметрична черной части другой шапки относительно горизонтальной плоскости $\pi$, проходящей через центр сферы.
Осталось разобраться со сферическим поясом. Для этого воспроизведем на рисунке сечение сферы плоскостью $\pi$, на котором показаны следы секущих плоскостей и следы черных и белых кусков сферического пояса (рис.2).
Одинаковым номерам соответствуют следы тех кусков, которые симметричны и имеют разные цвета.
Напоследок заметим, что объектом утверждения задачи может выступать не только сфера, но любая поверхность выпуклого тела, имеющего три попарно перпендикулярные плоскости симметрии (например, эллипсоид или правильный октаэдр; случай с октаэдром особенно интересен, поскольку у него существуют различные попарно перпендикулярные тройки плоскостей симметрии). Но в указанном смысле также любопытен и случай с обыкновенным кубом (рис.3).
Докажите, что при любом натуральном $n$ справедливо неравенство $$\left \{ \sqrt{1} \right \} + \left \{ \sqrt{2} \right \} +\dots+ \left \{ \sqrt{n} \right \} \leqslant \frac{n^2-1}{2}$$ (Здесь $\left \{ k \right \}$ — дробная часть числа $k$.)
Решение
При $n = 1$ неравенство обращается в равенство $0 = 0$. При $n > 1$ докажем, что сумма дробных частей на каждом промежутке между двумя последовательными квадратами удовлетворяет неравенству $$\sum_{k=m^2}^{m^2+2m} \left \{ \sqrt{k} \right \} \leqslant \frac{2m+1}{2}.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(1)$$
Нетрудно проверить (например, с помощью очевидного неравенства $\displaystyle \sqrt{m^2+x} \leqslant m + \frac{x}{2m}$), что
$$\sqrt{m^2+a} + \sqrt{m^2 + m -a} \leqslant 2m+1$$
при $0 \leqslant a \leqslant m$.
Просуммировав эти неравенства при $a =0,1,\dots,m-1$ и неравенство $\displaystyle \left \{ m^2+m \right \} \leqslant \frac{1}{2}$ (получаемое деление на $2$ обеих частей $(2)$ при $a = m$), приходим к неравенству $(1)$. Суммируя неравенство $(1)$ по всем $m$ от $1$ до $n-1$, получаем $$\sum_{k=1}^{n^2-1} \left \{ \sqrt{k} \right \} \leqslant \frac{n^2-1}{2}.$$
Остается заметить, что $\left \{ \sqrt{n^2} \right \} = 0.$
В полярных координатах положение точки на плоскости характеризуется полярным радиусом $r$ – расстоянием от точки до начала координат и углом $φ$, образованным радиус-вектором точки и положительным направлением оси $Ox$. Будем считать, что $−\pi< φ \leqslant \pi$. Рассмотрим на плоскости множество, ограниченное кривой, заданной уравнением $r=r(\varphi)$ $(\alpha \leqslant \varphi \leqslant \beta)$, и отрезками лучей $\varphi=\alpha$
и $\varphi=\beta$. Предположим, что функция $r(\varphi)$ непрерывна и положительна на $[\alpha ,\beta]$. Можно показать, что это множество квадрируемо. Разобьем отрезок $[\alpha, \beta]$ на части точками $\alpha =\varphi_{0} < \varphi_{1}< \dots < \varphi_{n}= \beta$. Тогда рассматриваемое множество разобьется на криволинейные секторы. Если исходное разбиение отрезка $[\alpha, \beta]$ достаточно мелкое, то, в силу непрерывности функции $r(\varphi),i$-й сектор можно приближенно считать сектором круга. Точнее, если обозначим $$\mu_{i} =\inf_{\varphi_{i} \leqslant \varphi_{i} \leqslant \varphi_{i+1}}r(φ) \;\;\;и\;\;\;Mi=\sup_{\varphi_{i} \leqslant \varphi \leq \varphi_{i+1}}r(φ),$$ то рассматриваемый криволинейный сектор содержит в себе круговой сектор радиуса $\mu_{i}$ и содержится в круговом секторе радиуса $M_{i}$. Площадь внутреннего сектора радиуса $\mu_{i}$ равна $\displaystyle \frac{1}{2}\mu_{i}^{2} \Delta \varphi_{i}$, а площадь внешнего – $\displaystyle \frac{1}{2}M_{i}^2 \Delta \varphi_{i}$, где $\Delta \varphi_{i}$ – угол при вершине. Складывая эти площади, получим $$\frac{1}{2} \sum_{i=0}^{n-1}\mu_{i}^2 \Delta \varphi_{i}\equiv \underline S,$$ $$\frac{1}{2} \sum_{i=0}^{n-1}M{i}^2 \Delta \varphi_{i}\equiv \overline S.$$
Как мы уже отметили, рассматриваемое множество квадрируемо, так что его площадь $S$ удовлетворяет неравенству $\underline S\leqslant S\leqslant \overline S.$ Но $\underline S$ и $\overline S$ представляют собой соответственно нижнюю и верхнюю суммы Дарбу для функции $\displaystyle \frac{1}{2}r^2(\varphi),$ соответствующие данному разбиению отрезка $[\alpha,\beta].$ Поэтому, учитывая, что функция $\displaystyle \frac{1}{2}r^2(\varphi)$ интегрируема по Риману на отрезке $[\alpha; \beta ],$ получаем, что при стремлении к нулю диаметра разбиенияверхняя и нижняя суммы Дарбу обе стремятся к $\displaystyle \frac{1}{2} \int_\limits{ \alpha}^{ \beta}r^2( \varphi)d \varphi .$ Таким образом, мы доказали равенство
$$S=\frac{1}{2} \int_\limits{ \alpha}^{ \beta}r^2( \varphi)d \varphi .$$
Примеры решения задач
Данные примеры читателю рекомендуется решить самому в качестве тренировки.
Спираль Архимеда задается уравнением $r=a \varphi$ $(0 \leqslant \varphi \leqslant 2 \pi),$ где параметр $a>0.$ Найдите площадь множества точек плоскости, ограниченной спиралью Архимеда. Решение
Площадь множества точек плоскости, ограниченной спиралью Архимеда равна $$S=\frac{1}{2} \int\limits_{0}^{2 \pi}r^2(\varphi)d \varphi = \frac{1}{2} a^2 \int_\limits{0}^{2 \pi} \varphi^2 d \varphi = \frac{4 \pi^3 a^2}{3}$$
Ответ: $\displaystyle S=\frac{4 \pi^3 a^2}{3}.$
Вычислить площадь фигуры, ограниченной кардиоидой $r=1+ \cos \varphi$ $(0 \leqslant \varphi \leqslant 2 \pi)$ Решение
Вычислить площадь фигуры, ограниченной линией $r(\varphi)=2 \cos ^2 \varphi$ Решение
Так как, $r(\varphi)=2 \cos ^2 \varphi \geq 0$ $\forall \varphi ,$ значит угол принимает все значения от $\alpha = 0$ до $\beta = 2 \pi .$ По рабочей формуле:
$$S=\frac{1}{2} \int_\limits{\alpha}^{\beta}r^2(\varphi)d \varphi=\frac{1}{2}\int_\limits{0}^{2\pi}(2 \cos^2 \varphi)^2 d \varphi=$$
$$=\frac{1}{2}\cdot 4 \int_\limits{0}^{2\pi}(\cos^2 \varphi)^2 d \varphi =2\int_\limits{0}^{2\pi}\left ( \frac{1+\cos 2\varphi}{2} \right )^2 d \varphi=$$
$$=2\cdot \frac{1}{4}\int\limits_{0}^{2\pi} (1+\cos 2\varphi)^2 d \varphi= \frac{1}{2}\int_\limits{0}^{2\pi}(1+2\cos 2\varphi+\cos^22\varphi)d \varphi=$$
$$=\frac{1}{2}\int_\limits{0}^{2\pi} \left ( 1+2\cos2\varphi+\frac{1+\cos4\varphi}{2} \right )d \varphi=$$
$$=\frac{1}{2}\int_\limits{0}^{2\pi}\left ( \frac{3}{2} + 2\cos2\varphi +\frac{\cos4\varphi}{2} \right )d \varphi=$$
$$=\frac{1}{2}\left ( \frac{3}{2} \varphi+\sin2\varphi+ \frac{\sin4\varphi}{8} \right )\bigg|_{0}^{2\pi}=$$
$$=\frac{1}{2}\left ( \frac{3}{2}\cdot 2\pi+\sin4\pi+\frac{\sin8\pi}{8}-\left ( \frac{3}{2}\cdot 0 +\sin 0 + \frac{\sin0}{8} \right ) \right )=$$
$$=\frac{3\pi}{2}$$
Ответ: $\displaystyle S=\frac{3\pi}{2}.$
Вычислить площадь фигуры, ограниченной линиями, заданными в полярных координатах $r=\sqrt{3} \cos \varphi,$ $r=\sin \varphi$ $\displaystyle \left ( 0 \leqslant \varphi \leqslant \frac{\pi}{2} \right ).$ Решение
Фигура, ограниченная окружностями $r=\sqrt{3} \cos \varphi,$ $r=\sin \varphi ,$ не определена однозначно и поэтому в условии наложено дополнительное ограничение на угол $\displaystyle \left ( 0 \leqslant \varphi \leqslant \frac{\pi}{2} \right ),$ из которого следует, что необходимо вычислить заштрихованную площадь:
Сначала найдем луч $\displaystyle \varphi=\frac{\pi}{3},$ по которому пересекаются окружности. Приравниваем функции и решаем уравнение:
$$\sin \varphi=\sqrt{3} \cos \varphi$$
$$\frac{\sin \varphi}{\cos \varphi} = \sqrt{3}$$
$$\tg \varphi = \sqrt{3}$$
Таким образом: $\displaystyle \varphi=\arctg\sqrt{3}=\frac{\pi}{3}$
Из чертежа следует, что площадь фигуры нужно искать как сумму площадей:
Будем называть декартовой плоскостью $\mathbb{R}^2$ множество всех упорядоченных пар действительных чисел $(x,y)$. Элементы $\mathbb{R}^2$ называют точками, а числа $x,y$ – координатами этих точек.
Пусть $a\leqslant b,c\leqslant d$. Множество всех точек, координаты $(x,y)$ которых удовлеворяют неравенствам $a\leqslant x\leqslant b,c\leqslant y\leqslant d$, будем называть прямоугольником и обозначать $[a,b;c,d]$. Стороны прямоугольника параллельны координатным осям. Если $a=b$ или $c=d$, то прямоугольник $[a,b;c,d]$ называется вырожденным.
Множество всех точек $(x,y)$ , удовлетворяющих неравенствам $a< x< b, c< y< d$, называют внутренностью прямоугольника.
Площадью (или мерой) прямоугольника $I\equiv [a,b;c,d]$ называется произведение длин его сторон, т.е. $m(I)=(d−c)(b−a)$.
Фигурой (или элементарным множеством) назовем такое множество на плоскости, которое можно представить в виде объединения конечного числа прямоугольников. Фигура называется вырожденной, если она может быть представлена в виде конечного объединения вырожденных прямоугольников.
Предложение. Каждую фигуру можно разбить на конечное число прямоугольников с попарно непересекающимися внутренностями.
Это предложение принимаем без доказательства.
Определение. Пусть фигура $X$ является объединением прямоугольников $I_{1},\dots ,I_{n}$, у которых внутренности попарно не пересекаются. Тогда мерой фигуры $X$ называется
$$m(X) = \sum_{k=1}^{n}m(I_{k}).$$
Нетрудно показать, что данное определение меры не зависит от способа разбиения этой фигуры на прямоугольники с попарно непересекающимися внутренностями. Ясно, что мера вырожденной фигуры равна нулю.
Пусть теперь $E$ – произвольное множество на плоскости, которое содержится в некотором прямоугольнике, т.е. ограниченное.Число $$m^*(E) = \inf_{X\supset E}m(X),$$ где нижняя грань берется по всевозможным фигурам $X$, содержащим множество $E$, называется внешней мерой Жордана множества $E$. Далее, число $$m_{*}(E) = \sup_{X\subset E}m(X),$$ где верхняя грань берется по всевозможным фигурам $X$, содержащимся во множестве $E$, называется внутренней мерой Жордана множества $E$.
Нетрудно показать, что если фигуры $X$ и $Y$ таковы, что $X\subset Y$, то $m(X) \leqslant m(Y)$. Отсюда сразу следует, что для любого ограниченного множества $E$ справедливо неравенство $m_{∗}(E)\leqslant m^*(E).$
Определение. Если внутренняя мера множества $E$ равна его внешней мере, то множество $E$ называется измеримым по Жордану или квадрируемым. В этом случае общее значение внешней и внутренней мер называется мерой Жордана множества $E$ и обозначается $m(E).$
Пусть $E$ – множество всех точек из единичного квадрата $[0,1;0,1]$, у которых обе координаты рациональны. Это множество не содержит ни одной невырожденной фигуры, т.к. в каждом невырожденном прямоугольнике существуют точки с иррациональными координатами. Значит, $m_{∗}(E)=0.$ С другой стороны, нетрудно показать, что любая фигура, содержащая множество $E$, содержит также единичный квадрат. Поэтому $m^∗(E)=1.$ Таким образом, $m_{∗}(E)< m^∗(E)$, так что множество $E$ неизмеримо по Жордану.
Определение. Пусть $f$ – неотрицательная функция на отрезке $[a,b].$ Подграфиком функции $f$ будем называть множество $E_{f}$ всех точек $(x,y)$, координаты которых удовлетворяют неравенствам $a\leqslant x\leqslant b,0\leqslant y\leqslant f(x).$
Теорема. Пусть функция $f$ неотрицательна и интегрируема на отрезке $[a,b].$ Тогда ее подграфик $E_{f}$ измерим и $$m(E_{f}) = \int \limits_{a}^{b} f(x)dx.$$
Возьмем разбиение $a = x_{0} < x_{1} < \dots < x_{n} = b$ отрезка $[a,b]$ и обозначим $$m_{i} = \inf_{x\in [x_{i},x_{i+1}]}f(x),\;\;\;\;\;\;\; M_{i} = \sup_{x\in [x_{i},x_{i+1}]}f(x).$$
Далее пусть
$$\underline \Delta_{i} = [x_{i},x_{i+1};0,m_{i}],$$ $$\overline{\Delta_{i}} = [x_{i},x_{i+1};0,M_{i}],$$ $$\underline X=\bigcup_{i=0}^{n-1}\underline \Delta_{i},$$ $$\overline{X}=\bigcup_{i=0}^{n-1}\overline{\Delta_{i}}.$$
Тогда, по определению меры фигуры, имеем $$m(\underline X)=\sum_{i=0}^{n-1}m(\underline\Delta_{i})=\sum_{i=0}^{n-1}m_{i}\Delta x_{i}=\underline S ,$$
где $\underline S$ – нижняя сумма Дарбу функции $f$, соответствующая выбранному разбиению. Аналогично получаем, что $m(\overline X)=\overline S,$ где $\overline S$ – верхняя сумма Дарбу.
Поскольку функция $f$ интегрируема, то $\overline S — \underline S\rightarrow 0$ вместе с диаметром разбиения. Следовательно, для любого $\varepsilon >0$ найдется такое $\delta >0$, что для любого разбиения диаметра, меньшего, чем $\delta$, справедливо неравенство $\overline S — \underline S < \varepsilon$. Значит, $m(\overline X)−m(\underline X) < \varepsilon$. Заметим, что $\underline X\subset E_{f} \subset \overline X$. Поэтому $m(\underline X) \leqslant m_{*}(E_{f}) \leqslant m^*(E_{f}) \leqslant m(\overline X)$. Отсюда следует $m^*(E_{f})-m_{*}(E_{f}) <\varepsilon$, а значит, $m_{∗}(E_{f})$ и $m^∗(E_{f})$ равны. Это означает, что множество $E_{f}$ измеримо. Кроме того, из неравенств $\underline S \leqslant m(E_{f})\leqslant \overline S$ и из того, что $\displaystyle \overline S - \underline S\rightarrow 0$ и $\displaystyle \overline S \rightarrow \int\limits_{a}^{b} f(x)dx,$ $\displaystyle \underline S \rightarrow \int\limits_{a}^{b} f(x)dx$, вытекает, что $\displaystyle m(E_{f})=\int\limits_{a}^{b} f(x)dx$.
Примеры решения задач
Данные примеры читателю рекомендуется решить самому в качестве тренировки.
Вычислить площадь фигуры, ограниченной линиями $y=x^2+2,$ $y=0,$ $x=-2,$ $x=1$. Решение
На отрезке $[-2;1]$ график функции $y=x^2+2$ расположен над осью $Ox$, поэтому:
$$S=\int\limits_{-2}^{1}(x^2+2)dx=\left ( \frac{x^3}{3}+2x \right )\bigg|_{-2}^1=$$
$$=\frac{1}{3}+2-\left ( -\frac{8}{3}-4 \right ) = \frac{1}{3} +2+\frac{8}{3}+4=9$$
Ответ: $S=9.$
Вычислить площадь фигуры, ограниченной линиями $\displaystyle y=\frac{2}{x},$ $y=x+1,$ $y=0,$ $x=3.$ Решение
Фигура, площадь которой нам нужно найти, зарисована серым цветом.
Этот пример полезен тем, что в нём площадь фигуры считается с помощью двух определенных интегралов:
На отрезке $[-1;1]$ над осью $Ox$ расположен график прямой $y=x+1$;
На отрезке $[1;3]$ над осью $Ox$ расположен график гиперболы $\displaystyle y=\frac{2}{x}$.
Понятно, что площади нужно сложить, поэтому:
$$S=\int\limits_{-1}^{1}(x+1)dx+\int\limits_{1}^{3}\frac{2dx}{x}=$$
$$=\left ( \frac{x^2}{2} +x\right )\bigg|_{-1}^1 +2(\ln x)\bigg|_{1}^3=$$
$$=\frac{1}{2}+1-\left ( \frac{1}{2}-1 \right ) +2(\ln3- \ln 1)=$$
$$=\frac{1}{2}+1-\frac{1}{2}+1+2(\ln3-0)=2+2\ln3=2(1+\ln3)$$
Ответ: $S=2(1+\ln3).$
Найти площадь множества, ограниченного линиями $y=x^2+1,$ $x+y=3.$ Решение
Решая эту систему, находим $x_{1}=-2,$ $x_{2}=1.$ Поэтому
$$S=\int\limits_{-2}^{1}(3-x)dx-\int\limits_{-2}^{1}(x^2+1)dx=$$
$$=9-\frac{x^2}{2}\bigg|_{-2}^1-\left ( \frac{x^3}{3}+x \right )\bigg|_{-2}^1=$$
$$=9-\frac{1}{2}+2-\frac{4}{3}-\frac{8}{3}-2=4.5$$
Ответ: $S=4.5.$
Найти площадь круга $x^2+y^2 \leqslant R^2$. Решение
Верхняя полуокружность задается уравнением $y=\sqrt{R^2-x^2},$ $-R \leqslant x \leqslant R.$ Поэтому площадь верхнего полукруга равна
$$S=\int\limits_{-R}^{R}\sqrt{R^2-x^2}dx=2\int\limits_{0}^{R}\sqrt{R^2-x^2}dx=$$
$$=[x=Rz]=2R^2\int\limits_{0}^{1}\sqrt{1-z^2}dz=\frac{\pi R^2}{2},$$
а значит, площадь всего круга равна $\pi R^2.$
Ответ: $S=\pi R^2.$
Вычисление площадей
Лимит времени: 0
Навигация (только номера заданий)
0 из 7 заданий окончено
Вопросы:
1
2
3
4
5
6
7
Информация
Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме «Вычисление площадей».
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 7
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат
Ваш результат
Рубрики
Нет рубрики0%
максимум из 7 баллов
Место
Имя
Записано
Баллы
Результат
Таблица загружается
Нет данных
Ваш результат был записан в таблицу лидеров
Загрузка
1
2
3
4
5
6
7
С ответом
С отметкой о просмотре
Задание 1 из 7
1.
Количество баллов: 1
Заполните пропуск:
Если внутренняя мера множества E равна его внешней мере, то множество E называется (квадрируемым, измеримым по Жордану, квадрируемо, квадрируемое, измиримо по Жардану, измеримо по Жардану, измиримо по Жардану, измеримым по Жардану, измиримым по Жардану, измиримым по Жордану).
Задание 2 из 7
2.
Количество баллов: 1
Укажите верное утверждение
Задание 3 из 7
3.
Количество баллов: 1
Пусть функция $f$ неотрицательна и интегрируема на отрезке $[a,b].$ Тогда ее подграфик $E_{f}$ измерим и
Задание 4 из 7
4.
Количество баллов: 1
Найти площадь фигуры, ограниченной линиями $y=x^2-2,$ $y=2x+1.$
Задание 5 из 7
5.
Количество баллов: 1
Найти площадь плоской фигуры, ограниченной линиями $y=2x-x^2,$ $y=-x.$