М1343. Пересечение трёх хорд окружности

Задача из журнала «Квант» (1992 год, 11 выпуск)

Условие

Три хорды окружности $\gamma$ попарно пересекаются в точках $A$, $B$, $C$. Построим еще три окружности: одна касается сторон угла $CAB$ и окружности $\gamma$ (изнутри) в точке $A_{1}$, вторая — сторон угла $ABC$ и окружности $\gamma$ (изнутри) в точке $B_{1}$, третья — сторон угла $ACB$ и окружности $\gamma$ (изнутри) в точке $C_{1}$. Докажите, что три отрезка $AA_{1}$, $BB_{1}$ и $CC_{1}$ пересекаются в одной точке (рис. 1)

Решение

Пусть $\gamma_{0}$ — окружность, вписанная в треугольник $ABC$, $I$ — ее центр, $K$ — центр окружности $\gamma$, $L$ — центр гомотетии $H$, переводящей окружность $\gamma$ в $\gamma_{0}$ (точка $K$ лежит на продолжении отрезка $К_{1}$ за точку $I$, причем отношение $LI/KI$ равно отношению радиусов окружностей $\gamma$ в $\gamma_{0}$).

Докажем, что отрезок $AA_{1}$, (рис. 2) проходит через точку $L$ (точно так же мы можем рассуждать и об отрезках $ВВ_{1}$ и $СС_{1}$).Гомотетию $H$ можно рассматривать как композицию двух гомотетий: первая из них $H_{1}$ с центром $A_{1}$ переводит у в окружность $\gamma_{A}$, касающуюся окружности $\gamma$ в точке $A_{1}$, вторая $H_{2}$ с центром $А$ переводит $\gamma_{A}$ в $\gamma_{0}$ при этом, конечно, $H = H_{2} \circ H_{1}$.Тот факт, что точка $L$ лежит на прямой (даже на отрезке) $AA_{1}$, вытекает из так называемой «теоремы о трех центрах подобия»: если $H_{1}$, и $H_{2}$ — две гомотетии с коэффициентами $k_{1}$ и $k_{2}$, $k_{1} k_{2} \neq 1$, то их композиция $H = H_{2} \circ H_{1}$, — тоже гомотетия с коэффициентом $k_{1} k_{2}$, причем центры всех трех гомотетий лежат на одной прямой.

Докажем это в интересующем нас случае, когда $0<k_{1}<1$ и $0<k_{2}<1$ (при этом центр гомотетии $H$ будет лежать на отрезке, соединяющем центры гомотетий $H_{1}$ и $H_{2}$).Возьмем три точки $P$, $Q$ и $X$, не лежащие на одной прямой (рис. 3). Пусть $P_{1}=H(P)$, $Q_{1}=H(Q)$, $X_{1}=H(X)$.Треугольник $P_{1}Q_{1}X_{1}$, подобен треугольнику $PQX$, причем их сходственные стороны либо параллельны, либо лежат на одной прямой. Отсюда следует, что найдутся две стороны (пусть для определенности это будут $PQ$ и $P_{1}Q_{1}$), лежащие на несовпадающих параллельных прямых.Прямые $PP_{1}$ и $QQ_{1}$ пересекаются в некоторой точке $O$ (поскольку $P_{1}Q_{1} = kPQ < PQ$), лежащей по ту же сторону от прямой $PQ$, что и точки $P_{1}$ и $Q_{1}$.

Теперь ясно, что точки $X$ и $X_{1}$ лежат на одной прямой, причем $OX_{1}/OX = k$, т. е. $H$ — гомотетия с центром $O$ и коэффициентом $k=k_{1}k_{2}$. Если $O_{1}$ — центр гомотетии $H_{1}$, а $O_{2}$ — центр гомотетии $H_{2}$, то $H(O)=H_{2}(O_{1})$ лежит на отрезке $O_{1}O_{2}(k_{2} < 1$); это значит, что прямая $O_{1}O_{2}$ проходит через точку $O$, причем точки$O_{1}$ и $O_{2}$ лежат по разные стороны от точки $O$ на прямой $O_{1}O_{2}$ ($0<k_{1}<1$ и $0<k_{2}<1$). Отсюда следует, что точка $О$ лежит на отрезке $O_{1}O_{2}$. Утверждение задачи тем самым доказано — все три отрезка $AA_{1}$, $BB_{1}$ и $CC_{1}$ проходят через точку $L$.

Н.Васильев

М1336. Доказательство неравенства

Задача из журнала «Квант» (1992 год, 10 выпуск)

Условие

Докажите для любых чисел $m$ и $n$, больших 1, неравенство $$\frac{1}{\sqrt[n]{m+1}}+\frac{1}{\sqrt[m]{n+1}}>1 \tag{*}$$

Доказательство

Докажем, что неравенство $$(1+x)^{a}<1+\alpha x$$ выполняется при $0 < \alpha < 1 $ и $x>0$. Пусть $$f(x)=(1+x)^{\alpha}-\alpha x-1$$ Имеем $$f(0) = 0$$ $$f^{\prime}(x)=\alpha(1+x)^{\alpha-1}-\alpha<0$$ при $x>0$. Следовательно, при $x \geqslant 0$ функция $f(x)$ убывает, поэтому $f(x)<f(0)=0$ при $x>0$.

Пользуясь неравенством $(*)$, получаем, что $$(1+m)^{\frac{1}{n}}<1+\frac{m}{n},(1+n)^{\frac{1}{m}}<1+\frac{n}{m}$$ откуда сразу следует, что $$\frac{1}{\sqrt[n]{1+m}}+\frac{1}{\sqrt[m]{1+n}}>\frac{n}{m+n}+\frac{m}{m+n}=1$$

И. Сендеров