М1396. Выполняется ли неравенство?

Задача из журнала «Квант» (1993, №5, M1396)

Условие

Докажите, что для любых положительных чисел $a_{k},b_{k} (k=1,2,…,n)$ выполнено неравенство $$\sum\limits_{k=1}^{n}{\frac{a_{k}b_{k}}{a_{k}+b_{k}}}\leq \frac{AB}{A+B}$$где $A=a_{1}+…a_{n}, B=b_{1}+…+b_{n}$.

Первое решение

Доказательство проведем по индукции. Докажем неравенство для $n=2$. Положим $v=a_{1}+b_{1},u=a_{2}+b_{2}$: $$a_{1}b_{1}u^2+(a_{1}b_{1}+a_{2}b_{2})uv+a_{2}b_{2}v^2\leq uv(a_{1}+a_{2})(b_{1}+b_{2})$$ или $$a_{1}b_{1}u^2-(a_{2}b_{1}+a_{1}b_{2})uv+a_{2}b_{2}v^2\leq 0$$Обозначим $t=u/v$. Перепишем неравенство: $$v^2a_{1}b_{1}(t-\frac{b_{2}}{b_{1}})(t-\frac{a_{2}}{a_{1}})\leq 0$$Подставляя $t=(a_{2}+b_{2})/(a_{1}+b_{1})$, приходим к эквивалентному неравенству: $$(b_{2}a_{1}-b_{1}a_{2})(a_{2}b_{1}-a_{1}b_{2})\leq 0$$ или $$-(b_{2}a_{1}-b_{1}a_{2})^2\leq 0$$Неравенство доказано.

Еще одно, геометрическое, доказательство неравенства основано на том, что биссектриса прямого угла треугольника с катетами $a$ и $b$ равна $\sqrt{2}ab/(a+b)$.

Picture one

Пусть, для определенности $b_{2}/a_{2}\geq  b_{1}/a_{1}$. Рассмотрим конфигурацию рисунка 1. Точка пересечения биссектрисы с отрезком $AB$ лежит дальше от вершины угла $O$, чем точка $L$ $(PK/KQ=BP/QA=b_{1}/a_{1})\leq PL/LQ=b_{2}/a_{2})$.

Дадим еще одно доказательство этого неравенства, основанное на исследовании функции $$f(x)=\frac{(x+a_{2})(b_{1}+b_{2})}{x+a_{2}+b_{1}+b_{2}}-\frac{xb_{1}}{x+b_{1}}$$ где $x\geq 0$. Нетрудно проверить, что $$f(0)=\frac{a_{2}(b_{1}+b_{2})}{a_{2}+b_{1}+b_{2}}>\frac{a_{2}b_{2}}{a_{2}+b_{2}}$$ функция $f(x)$ имеет единственный минимум при $x=a_{2}b_{1}/b_{2}$, равный $a_{2}b_{2}/(a_{2}+b_{2});$ $f(x)\rightarrow b_{2}$ при $x\rightarrow +\infty$ (рис. 2). Отсюда легко вывести, что $f(x)\geq a_{2}b_{2}/(a_{2}+b_{2})$ при всех $x\geq 0$. Далее, $$\sum\limits_{k=1}^{n+1}{\frac{a_{k}b_{k}}{a_{k}+b_{k}}}\leq \frac{A’B’}{A’+B’}+\frac{a_{n+1}b_{n+1}}{a_{n+1}+b_{n+1}}\leq \frac{AB}{A+B}$$ где $$A’=\sum\limits_{k=1}^{n}{a_{k}}, B’=\sum\limits_{k=1}^{n}{b_{k}}$$ Неравенство задачи доказано. Мы видели, что для $n=2$ неравенство переходит в равенство лишь при $x/b_{1}=a_{2}/b_{2}$, т.е. в случае коллинеарности векторов $(a_{1},b_{1})$ и $(a_{2},b_{2})$. Попробуем дать задаче дальнейшую векторную интерпретацию.

Второе решение

Будем рассматривать числовые функции $f(\bar{x})$, где $\bar{x}=(x,y)$ — вектор плоскости, $x>0,y>0$.

Определение. Функция $f(\bar{x})$ называется вогнутой (или выпуклой вверх), если для любых векторов $\bar{x}_{1}$ и $\bar{x}_{2}$ выполняется неравенство $$\frac{f(\bar{x}_{1})+f(\bar{x}_{2})}{2}\leq f(\frac{\bar{x}_{1}+\bar{x}_{2}}{2}) (1)$$
Замечание. Геометрический смысл вогнутости ясен из рисунка 3. Вогнутыми являются, например,  функции $y=ax+b, y=-x^{2}+bx+c, y=-1/(dx+e)$, где $dx+e>0$.Рассмотрим функцию $$f(\bar{x})=\frac{xy}{x+y}$$

Picture (2)

При $n=2$ утверждение задачи означает, что функция вогнута; при произвольном $n$ утверждение означает, что выполнено неравенство $$\frac{1}{n}\sum\limits_{i=1}^{n}{f({\bar{x}_{i}})}\leq f(\frac{1}{n}\sum\limits_{i=1}^{n}{{\bar{x}_{i}}}) (2)$$

Теорема. Для любой вогнутой (т.е. удовлетворяющей неравенству $(1)$) функции выполнено также и неравенство $(2)$.
Доказательство. Предполагая справедливость теоремы при $n=m$, докажем ее справедливость при $n=2m$. Имеем: $$f(\frac{{\bar{x}_{1}}+{\bar{x}_{2}}+…+{\bar{x}_{2m}}}{2m})=$$ $$=f(\frac{\frac{{\bar{x}_{1}}+{\bar{x}_{2}}}{2}+…+\frac{{\bar{x}_{2m-1}}+{\bar{x}_{2m}}}{2}}{m})\geq$$ $$\geq \frac{f(\frac{{\bar{x}_{1}}+{\bar{x}_{2}}}{2})+…+f(\frac{{\bar{x}_{2m-1}}+{\bar{x}_{2m}}}{2})}{m}\geq$$ $$\geq \frac{\frac{f({\bar{x}_{1}})+f({\bar{x}_{2}})}{2}+…+\frac{f({\bar{x}_{2m-1}})+f({\bar{x}_{2m}})}{2}}{m}=$$ $$=\frac {f({\bar{x}_{1}})+…+f({\bar{x}_{2m}})}{2m}$$ Таким образом теорема справедлива при $n=2m$. Положим теперь $n+p=2m$. Тогда $$f(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}+{\bar{y}_{1}}+…+{\bar{y}_{p}}}{n+p})\geq$$ $$\geq\frac {f({\bar{x}_{1}})+…+f({\bar{x}_{n}})+f({\bar{y}_{1}})+…+f({\bar{y}_{p}})}{n+p} (3)$$ Положим $${\bar{y}_{1}}=…={\bar{y}_{p}}=\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n}$$ тогда $${\bar{y}_{1}}+…+{\bar{y}_{p}}=\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n}\cdot p$$ Следовательно, $$f(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}+{\bar{y}_{1}}+…+{\bar{y}_{p}}}{n+p})=f(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n})$$ С другой стороны, $$\frac{f({\bar{x}_{1}})+…+f({\bar{x}_{n}})+f({\bar{y}_{1}})+…+f({\bar{y}_{p}})}{n+p}=$$ $$=\frac{f({\bar{x}_{1}})+…+f({\bar{x}_{n}})+pf(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n})}{n+p}$$ Из неравенства $(3)$ получаем: $$f(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n})\geq \frac{f({\bar{x}_{1}})+…+f({\bar{x}_{n}})}{n}$$ Теорема доказана.

Перепишем теперь утверждение задачи при $n=2$; функция $f(\bar{x})=\frac{xy}{x+y}$, рассматриваемая на любой прямой $l$, является вогнутой. Докажем это утверждение.

Если $l\mid Oy$, то вогнутость функции $f(\bar{x})$ очевидна. Пусть $l$ задана уравнением $y=ax+b$. Тогда $$f(\bar{x})=\frac{ax^{2}+bx}{(a+1)x+b}$$ При $a=-1$ будет $b>0$, и $f(x)$ вогнута. Полагая $t=(a+1)x+b$ при $a\neq -1$, получаем: $f(\bar{x})=ct+d+\frac{e}{t}$, где $e=\frac{-b^{2}}{(a+1)^{2}}$

При $b=0$ функция $f(\bar{x})$ линейная, при $b\neq 0$, поскольку $t>0$, — строго вогнутая (т.е. при $\bar{x}_{1}\neq \bar{x}_{2}$ неравенство $(1)$ строгое).

Утверждение задачи доказано.

Признак сравнения несобственных интегралов

Признак сравнения в форме неравенств

Теорема

Пусть функции $f$ и $g$ неотрицательны на $[a,b)$ и интегрируемы на каждом отрезке, содержащемся в $[a,b)$. Предположим, что $f(x)\leq g(x)$ для любого $x\in [a,b)$. Тогда:

  1. из сходимости интеграла $I_{2}=\int_{a}^{b}{g(x)dx}$ следует сходимость интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$;
  2. из расходимости интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$ следует расходимость интеграла $I_{2}=\int_{a}^{b}{g(x)dx}$;
Спойлер
  1. Из $ 0\leq f(x) \leq g(x)$ следует, что $\int_{a}^{\xi}{f(x)dx}\leq \int_{a}^{\xi}{g(x)dx}$ $(1)$, $\xi \in [a,b)$. Если сходится интеграл $I_{2}=\int_{a}^{b}{g(x)dx}$, т.е. существует конечный $\lim_{\xi \rightarrow b-0} \int_{a}^{\xi}{g(x)dx}=I_{2}$, где $I_{2}=sup_{a\leq\xi <b} \int_{a}^{\xi}{g(x)dx}$, то из $(1)$ следует, что $\forall \xi \in [a,b)$ выполняется неравенство $\int_{a}^{\xi}{f(x)dx} \leq I_{2}$. Таким образом для неотрицательной функции $f(x)$ выполняется условие $\exists C: \forall \xi \in [a,b) \rightarrow \int_{a}^{\xi}{f(x)dx}\leq C$ (критерий сходимости интегралов от неотрицательных функций). Следовательно, интеграл $I_{2}$ сходится.
  2. Пусть $I_{1}$ расходится. Предположим, что  $I_{2}$ сходится, тогда по первому пункту сходится и $I_{1}$, что противоречит условию, следовательно $I_{2}$ тоже расходится.

[свернуть]

Спойлер

Сходится ли интеграл? $$I_{1}=\int\limits_{1}^{+\infty}{\frac{\cos^{4}3x}{\sqrt[5]{1+x^{6}}}dx}$$

Так как $$0\leq \frac{\cos^{4}3x}{\sqrt[5]{1+x^{6}}}\leq \frac{1}{\sqrt[5]{1+x^{6}}}\leq \frac{1}{x^{6/5}}$$ при $x\geq 1$ $I_{2}=\int_{1}^{+\infty}{\frac{1}{x^{6/5}}dx} < \infty$ (сходится), т.к. $\alpha =\frac{6}{5}>1$. Тогда, если интеграл $I_{2}$ сходится, то из сходимости интеграла $I_{2}$ следует сходимость интеграла $I_{1}$.
Ответ: $I_{1}$ сходится.

[свернуть]

Признак сравнения в предельной форме

Теорема

Пусть функции $f(x) $ и $g(x) $ неотрицательны на $[a,b)$ и интегрируемы на каждом отрезке, содержащемся в $[a,b)$. Тогда, если для $\forall x \in [a,b)$ выполняются условие $f(x)\sim g(x)$ при $x\rightarrow b-0$  $(\lim_{x \rightarrow b-0}\frac{f(x)}{g(x)}=1)$. Тогда интегралы $I_{1}=\int_{a}^{b}{f(x)dx}$ и $I_{2}=\int_{a}^{b}{g(x)dx}$ сходятся или расходятся одновременно (ведут себя одинаково).

Спойлер

Согласно условию $\lim\limits_{x \rightarrow b-0}\frac{f(x)}{g(x)}=1:$ $$\forall \varepsilon >0 \exists \delta _{\varepsilon}>0: b-\delta <x<b \Rightarrow \left|\frac{f(x)}{g(x)}-1 \right| < \varepsilon$$ или, что то же самое $$\forall \varepsilon >0 \exists \delta (\varepsilon)\in [a,b):\forall x \in[\delta (\varepsilon ),b) \rightarrow \left|\frac{f(x)}{g(x)}-1 \right| < \varepsilon $$ Выберем $\varepsilon =\frac{1}{2}$, найдем $\delta (\frac{1}{2})=c$ такое, что $b-c<x<b$ $$\left|\frac{f(x)}{g(x)}-1 \right|<\frac{1}{2} \Leftrightarrow -\frac{1}{2}<\frac{f(x)}{g(x)}-1<\frac{1}{2}\Leftrightarrow$$ $$\Leftrightarrow \frac{1}{2}<\frac{f(x)}{g(x)}<\frac{3}{2}\Leftrightarrow \frac{1}{2}g(x)<f(x)<\frac{3}{2}g(x), \forall x \in [b-c,b]$$ Так как функции $f(x)$ и $g(x)$ не имеют особых точек на промежутке $[a,b)$, то интегралы $I_{1}$ и $I_{2}$ сходятся тогда и только тогда, когда сходятся интегралы соответственно от функций $f(x)$ и $g(x)$ на промежутке $[b-c,b)$. Если сходится интеграл $I_{2}$ (а значит и $\int_{b-c}^{b}{g(x)dx}$), то из равенства $f(x)<\frac{3}{2}g(x)$ по признаку сравнения в форме неравенств следует сходимость интеграла $\int_{b-c}^{b}{f(x)dx}$, а это равносильно сходимости интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$. Аналогично, из $\frac{1}{2}g(x)<f(x)$ заключаем, что из сходимости интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$ следует сходимость интеграла $I_{2}=\int_{a}^{b}{g(x)dx}$.
Если же один из интегралов расходится, например, $I_{1}$. Тогда предположим, что $I_{2}$ сходится, следовательно, по доказанному выше $I_{1}$ тоже должен сходиться, что противоречит условию, следовательно $I_{2}$ тоже расходится. Т.е. если один из интегралов расходится, то расходится и другой.

[свернуть]

Замечание

Если функция $f(x)$ интегрируема на отрезке $[a,\xi]$ при $\forall \xi \geq \alpha$ и если $f(x)\sim \frac{A}{x^{\alpha}}$ при $x\rightarrow +\infty$, где $A\neq 0$, то интеграл $\int_{\alpha }^{+\infty}{f(x)dx}$ сходится при $\alpha >1$ и расходится при  $\alpha \leq 1$.

Спойлер

Сходится ли интеграл? $$\int\limits_{0}^{1}{\frac{\ln(1+x)}{x^{2}}dx}$$
$$\int\limits_{0}^{1}{\frac{\ln(1+x)}{x^{2}}dx}=\left[\frac{\ln(1+x)}{x^{2}}\sim \frac{x}{x^{2}}=\frac{1}{x} \right]$$ (можем заменить функцию эквивалентной т.к. $\frac{\ln(1+x)}{x^{2}}\rightarrow 0$). Тогда интеграл $\int_{0}^{1}{\frac{dx}{x}}=\infty$ расходится (т.к. $\alpha =1$).
Ответ: интеграл расходится.

[свернуть]

Тест по теме: Признак сравнения несобственных интегралов

Этот тест покажет ваши знания по данной теме.

Таблица лучших: Тест по теме: Признак сравнения несобственных интегралов

максимум из 15 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Несобственные интегралы от неограниченных функций

Определение

Пусть функция [latex]f[/latex] задана на полуинтервале [latex][a,b)[/latex], где $-\infty<a<b<+\infty$, и интегрируема по Риману на любом отрезке [latex][a,\xi][/latex], где $a<\xi<b$. Тогда, если существует конечный предел [latex]\lim_{\xi \to b-0}\int_{a}^{\xi}{f(x)dx}[/latex], то несобственный интеграл $II$ рода [latex]\int_{a}^{b}{f(x)dx}[/latex] называют сходящимся и полагают

$$\int\limits_a^b{f(x)dx}=\lim_{\xi \to b-0}\int\limits_{a}^{\xi}{f(x)dx}$$

В противном случае несобственный интеграл называют расходящимся.

Аналогично, если существует конечный [latex]\lim_{\xi \to a+0}\int_{\xi}^{b}{f(x)dx}[/latex], то несобственный интеграл $II$ рода [latex]\int_{a}^{b}{f(x)dx}[/latex] называют сходящимся и полагают

$$\int\limits_a^b{f(x)dx}=\lim_{\xi \to a+0}\int\limits_{\xi}^{b}{f(x)dx}$$

В противном случае, если такого предела нет, расходящимся.

Замечание

Определение несобственного интеграла от непрерывных функций является содержательным лишь в случае, когда  [latex]f(x)[/latex] неограниченна  в окрестности точек [latex]b,a[/latex]. При этом, эти точки называются особыми.

Пример:

Курсовая
Рассмотрим функцию [latex]\frac{1}{\sqrt{1-x}}[/latex]. Эта функция непрерывна на промежутке [latex][0,1)[/latex], но не ограничена на этом промежутке. При [latex]\forall\xi\in [0,1)[/latex] функция [latex]\frac{1}{\sqrt{1-x}}[/latex] интегрируема на отрезке [latex][0,\xi][/latex], причем [latex]J(\xi)=\int_{0}^{\xi}{\frac{dx}{\sqrt{1-x}}}=\left(-2\sqrt{1-x})\right|^{\xi}_{0}=2(1-\sqrt{1-\xi})[/latex], откуда следует, что существует конечный [latex]\lim_{\xi \to 1-0}F(\xi)=2[/latex]. В этом случае говорят, что несобственный интеграл от функции [latex]\frac{1}{\sqrt{1-x}}[/latex] на промежутке [latex][0,1)[/latex] равен [latex]2[/latex], т.е. [latex]\int_{0}^{1}{\frac{dx}{\sqrt{1-x}}}=2[/latex]. Число [latex]2[/latex] можно интерпретировать как площадь заштрихованной фигуры на Рис.1.

Тест по теме: Несобственные интегралы от неограниченных функций

Этот тест покажет насколько хорошо вы усвоили данную тему.

Таблица лучших: Тест по теме: Несобственные интегралы от неограниченных функций

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных