15.2.1 Признак сравнения рядов с неотрицательными слагаемыми

Теорема (признак сравнения).Пусть даны два ряда$$\displaystyle \sum_{n=1}^{\infty} a_n \tag {15.4} $$ $$\displaystyle \sum_{n=1}^{\infty} b_n \tag{15.5} $$ где $a_n \geqslant 0,\ b_n \geqslant 0 \left( n=1 ,2,\ldots \right).$ Предположим, что ряд $\left( 15.5 \right) $ является мажорантным рядом для ряда $\left( 15.4 \right) $, т. е. начиная с некоторого номера выполнены неравенства $a_n \leqslant b_n.$ Тогда из сходимости ряда $\left( 15.5 \right) $ следует сходимость ряда $\left( 15.4 \right) $, а из расходимости ряда $\left( 15.4 \right) $ следует расходимость ряда $\left( 15.5 \right). $

Так как конечное число слагаемых ряда не влияет на его сходимость, то, не ограничивая общности, можем считать, что неравенство $a_n \leqslant b_n$ выполнено для всех $n \geqslant 1.$ Пусть $S’_n$ и $S_n^{\prime \prime}$ – частичные суммы рядов $\left( 15.4 \right) $ и $\left( 15.5 \right) $, соответственно. Тогда ясно, что $S’_n \leqslant S_n^{\prime \prime} \left(n \geqslant 1 \right).$ Если ряд $\left( 15.5 \right) $ сходится, то $S_n^{\prime \prime}$ ограничены и, следовательно, ограничены и $S’_n,$ а это влечет сходимость ряда $\left( 15.4 \right) $. Обратно, если расходится ряд $\left( 15.4 \right) $, то $S’_n$ неограниченно возрастают и, следовательно, неограниченно возрастают и $S_n^{\prime \prime},$ т. е. ряд $\left( 15.5 \right)$ расходится.

Замечание 1. При доказательстве существенно было использовано условие $a_n \geqslant 0,\ b_n \geqslant 0 \ ( n = 1 ,\ 2,\ldots).$ Без этого условия теорема теряет силу. Например, если $a_n =−1, b_n =0 \ (n =1 ,\ 2,\ldots),$ то $a_n \leqslant b_n,$ ряд $\left( 15.5 \right) $ сходится, а ряд $\left( 15.4 \right) $ расходится.

Замечание 2. В доказанной теореме из расходимости ряда $\left( 15.5 \right) $ не следует расходимость ряда $\left( 15.4 \right) $, а из сходимости ряда $\left( 15.4 \right) $ не следует сходимость ряда $\left( 15.5 \right) $. Например, $a_n =0,b_n = 1 \ (n = 1,\ 2,\ldots).$

Следствие (признак сравнения в предельной форме).Пусть даны ряды $\left( 15.4 \right) $ и $\left( 15.5 \right) $ с положительными слагаемыми. Предположим, что существует (быть может, и бесконечный) $$\displaystyle \lim_{n \to \infty} \frac{a_n}{b_n} = \lambda.$$ Тогда

  1. если $\lambda =0,$ то из сходимости ряда $\left( 15.5 \right) $ следует сходимость ряда $\left( 15.4 \right) $, а из расходимости ряда $\left( 15.4 \right) $ следует расходимость ряда $\left( 15.5 \right) $;
  2. если $\lambda= + \infty ,$ то из сходимости ряда $\left( 15.4 \right) $ следует сходимость ряда $\left( 15.5 \right) $, а из расходимости ряда $\left( 15.5 \right) $ следует расходимость ряда $\left( 15.4 \right) $;
  3. если $0< \lambda < + \infty,$ то ряды $\left( 15.4 \right) $ и $\left( 15.5 \right) $ сходятся или расходятся одновременно.

Докажем c. Пусть $0 < \lambda < + \infty .$ Тогда, начиная с некоторого номера $N,$ выполнено неравенство $\frac{\lambda}{2} \leqslant \frac{a_n}{b_n} \leqslant 2 \lambda \ (n \geqslant N),$ т.е. $$\frac{\lambda}{2}b_n \leqslant a_n \leqslant 2 \lambda \cdot b_n.$$ Если расходится ряд $\left( 15.4 \right) $, то, в силу доказанного признака сравнения, из правого неравенства следует расходимость ряда $\left( 15.5 \right) $. Если ряд $\left( 15.4 \right) $ сходится, то, в силу признака сравнения, из левого неравенства следует сходимость ряда $\left( 15.5 \right).$

Доказательства случаев a. и b. аналогичны и мы их опускаем.

Пример 1. Исследовать на сходимость ряд $$\displaystyle \sum_{n=1}^{\infty} 2^n \sin \frac{1}{3^n}.$$ Из неравенства $ \sin x < x $, где $x$ положителен, следует, что $2^n \sin \frac{1}{3^n} \leqslant \left( \frac{2}{3} \right) ^n \ (n = 1,\ 2,\ldots).$ Так как ряд $\displaystyle \sum_{n=1}^{\infty} \left( \frac{2}{3} \right) ^n$ сходится (это – геометрическая прогрессия со знаменателем $\frac{2}{3}$), то исходный ряд также сходится в силу признака сравнения.

Пример 2. Ранее мы уже установили с помощью критерия Коши, что гармонический ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n}$ расходится. Докажем его расходимость с использованием признака сравнения. Сравним его с рядом $\displaystyle \sum_{n=1}^{\infty} \ln \left( 1 + \frac{1}{n} \right).$ Вычислим частичные суммы $$\displaystyle \sum_{k=1}^{\infty} \ln \left( 1 + \frac{1}{k} \right) = \sum_{k=1}^{\infty} \left[ \ln \left( k+1 \right) — \ln k \right] =$$ $$\left( \ln 2 — \ln 1 \right) + \left( \ln 3 — \ln 2 \right)+\ldots + \left( \ln \left( n+1 \right) — \ln n \right) = \ln \left( n + 1 \right) \rightarrow + \infty .$$ Значит, ряд $\displaystyle \sum_{n=1}^{\infty} \ln \left( 1 + \frac{1}{n} \right).$ расходится. Кроме того, из известного равенства $\displaystyle \lim_{x \to 0} \frac{\ln \left( 1 + x \right) }{x} = 1$ следует, что $\displaystyle \lim_{n \to \infty} \frac{\ln \left( 1 + \frac{1}{n} \right) }{ \frac{1}{n}} = \lambda = 1.$ Отсюда, всилу признака сравнения в предельной форме, вытекает, что ряды $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n}$ и $\displaystyle \sum_{n=1}^{\infty} \ln \left( 1 + \frac{1}{n} \right)$ сходятся или расходятся одновременно. Поскольку, как уже установлено, ряд $\displaystyle \sum_{n=1}^{\infty} \ln \left( 1 + \frac{1}{n} \right)$ расходится, то расходится и исходный гармонический ряд.

Пример 3. Рассмотрим ряд$\displaystyle \sum_{n=1}^{\infty} \left( 1 — \cos \frac{x}{n} \right),$ где $x \in \mathbb{R}$ – параметр. Ясно, что этот ряд сходится при $x =0.$ Пусть $x \neq 0$. В силу известного соотношения $1 − \cos \alpha \sim \frac{\alpha ^ 2}{2} \ (\alpha \rightarrow 0),$ имеем $1 − \cos \frac{x}{n} \sim \frac{x^2}{2} \cdot \frac{1}{n^2} \ (n \rightarrow \infty).$ Поэтому в качестве ряда для сравнения целесообразно выбрать ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2},$ для которого $\displaystyle \lim_{n \to \infty}\frac{1 — \cos \frac{x}{n}}{\frac{1}{n^2}} = \frac{x^2}{2}.$ Из признака сравнения в предельной форме следует, что ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2}$ и исходный ряд сходятся или расходятся одновременно (при $x \neq 0$). Выше было показано, что ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится (это – обобщенный гармонический ряд при $s =2> 1$). Поэтому сходится и исходный ряд при любом $x$.

Пример 4. Исследуйте на сходимость ряд $$\displaystyle \sum_{n=1}^{\infty} \frac{n+1}{n^2}.$$

Решение

Уменьшив числитель, найдём ряд-миноранта $$\sum_{n=1}^{\infty} \frac{n+1}{n^2} > \sum_{n=1}^{\infty} \frac{n}{n^2} =\sum_{n=1}^{\infty} \frac{1}{n}$$ Как уже рассматривали выше, это гармонический ряд у которого степень $s \leqslant 1$ а значит этот ряд расходится, а по признаку сравнения раз расходится ряд-миноранта, то расходится и исходный ряд.

[свернуть]

Пример 5. Исследуйте на сходимость ряд $$\sum_{n=1}^{\infty} \frac{\arctan n}{n^2+1}.$$

Решение

Арктангенс ограничен сверху константой $\frac{\pi}{2}$, значит $$\sum_{n=1}^{\infty} \frac{\arctan n}{n^2+1} \leqslant \sum_{n=1}^{\infty} \frac{\pi}{2n^2+2}$$ Уменьшив знаменатель дробь увеличивается $$\sum_{n=1}^{\infty} \frac{\pi}{2n^2+2} < \sum_{n=1}^{\infty} \frac{\pi}{2n^2}$$Как уже рассматривали выше, это гармонический ряд у которого степень $s > 1$ а значит этот ряд cходится, а по признаку сравнения раз ряд-мажоранта сходится, то сходится и исходный ряд.

[свернуть]

Пример 6. Исследуйте на сходимость ряд $$\sum_{n=1}^{\infty} \frac{9n + 7}{2n^3 + 5n^2 -3}.$$

Решение

Сравним общий член нашего ряда с общим членом ряда $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2}.$ Воспользуемся признаком сравнения в предельной форме.$$\lim_{n \to \infty} \frac{\frac{9n+7}{2n^3+5n^2-3}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2 \cdot \left( 9n+7 \right) }{2n^3+5n^2-3}=$$ $$= \lim_{n \to \infty} \frac{9n^3+ 7n^2}{2n^3 + 5n^2 -3} = \left| \frac{\infty}{\infty} \right| = \lim_{n \to \infty} \frac{\frac{9n^3}{n^3} + \frac{7n^2}{n^3}}{\frac{2n^3}{n^3} + \frac{5n^2}{n^3}-\frac{3}{n^3}} = $$ $$=\lim_{n \to \infty} \frac{9 +\frac{7}{n}}{2 + \frac{5}{n}-\frac{3}{n^3}} = \frac{9}{2}.$$ Так как $0 < \frac{9}{2} < \infty,$ то ряды $\displaystyle \sum_{n=1}^{\infty} \frac{9n + 7}{2n^3 + 5n^2-3}$ и $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2}$ сходятся либо расходятся одновременно. Так как ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, то сходится и ряд $\displaystyle \sum_{n=1}^{\infty} \frac{9n + 7}{2n^3 + 5n^2-3}.$

[свернуть]

Литература

Сходящиеся и расходящиеся числовые ряды. Признак сравнения

Тест на проверку знаний о числовых рядах и признака сравнения числовых рядов.

15.2 Ряды с неотрицательными слагаемыми

Пусть $\left\{ a_n \right\}_{n=1}^{\infty}$–последовательность неотрицательных чисел. Рассмотрим ряд $$\sum_{n=1}^{\infty} a_n \tag{15.3}$$

Теорема. Пусть $a_n \geqslant 0.$ Тогда ряд $\left( 15.3 \right) $ сходится в том и только в том случае, когда последовательность его частичных сумм $S_n$ ограничена сверху.

Так как $a_n \geqslant 0,$ то $S_n = S_{n−1} + a_n \geqslant S_{n−1}$, т. е. последовательность частичных сумм Sn монотонно возрастает. По теореме о пределе монотонной последовательности, сходимость $S_n$ (а значит, и сходимость ряда $\left( 15.3 \right) $) эквивалентна ее ограниченности.

Пример. Обобщенным гармоническим рядом называется ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^s},$ где число $s>0.$ Ранее мы уже установили, что при $s=1$ этот ряд расходится. Если $0<s<1,$ то$$S_n \left( s \right) = 1 +\frac{1}{2^s} + \ldots +\frac{1}{n^s} \geqslant 1 +\frac{1}{2} + \ldots +\frac{1}{n} = S_n,$$ и, в силу расходимости гармонического ряда, последовательность частичных сумм обобщенного гармонического ряда не ограничена сверху, т. е. обобщенный гармонический ряд расходится при $0<s \leqslant 1.$

По-другому расходимость обобщенного гармонического ряда при $0<s \leqslant 1$ можно было бы доказать так:$$S_n \left( s \right) = 1 +\frac{1}{2^s} + \ldots +\frac{1}{n^s}\geqslant n\cdot \frac{1}{n^s} = n ^{1-s} \rightarrow +\infty \ \ \left( n \rightarrow \infty \right),$$ откуда следует, что $S_n \left( s \right) \rightarrow +\infty \ \ \left( n \rightarrow \infty \right), $ т. е. расходимость ряда.

Рассмотрим теперь случай $s>1$ Пусть $n \in N.$ Выберем такое натуральное $m$, что $n<2^m.$ Тогда $$S_n \left( s \right) \leqslant S_{2^m-1} \left( s \right) = 1 + \left( \frac{1}{2^s} + \frac{1}{3^s} \right) + \left( \frac{1}{4^s} + \frac{1}{5^s} +\frac{1}{6^s} + \frac{1}{7^s} \right) + \ldots + $$ $$+ \left( \frac{1}{\left( 2^{m-1} \right)^s} + \frac{1}{\left( 2^{m-1}+1 \right)^s} +\ldots + \frac{1}{\left( 2^{m}-1 \right)^s}\right) \leqslant $$ $$\leqslant 1 + 2 \cdot \frac{1}{2^s} + 4 \cdot \frac{1}{4^s} + \ldots + 2^{m-1} \cdot \frac{1}{\left( 2^{m-1} \right)^s} = $$ $$ = 1 + 2^{1-s} + \left( 2^2 \right) ^{1-s} + \ldots + \left( 2^{m-1} \right) ^{1-s} = $$ $$ = 1 + 2^{1-s} + \left( 2^{1-s}\right)^2 + \ldots + \left( 2^{1-s}\right)^{m-1} = \frac{1 — \left( 2^{1-s} \right)^m}{1 — 2^{1-s}} < \frac{1}{1-2^{1-s}}$$

(условие $s>1$ использовано в последнем неравенстве). Отсюда следует, что при $s>1$ имеем $S_n\left( s \right) \leqslant \frac{1}{1−2^{1−s}}$, т. е. последовательность частичных сумм $\left\{S_n \left( s \right )\right\}$ ограничена сверху и, в силу доказанной теоремы, обобщенный гармонический ряд сходится при $s>1.$

Окончательно имеем: ряд $\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^s}$ сходится при $s>1$ и расходится при $0 < s \leqslant 1$. При $s \leqslant 0$ этот ряд, очевидно, расходится, так как не выполнено необходимое условие сходимости.

Признак сравнения несобственных интегралов

Признак сравнения в форме неравенств

Теорема

Пусть функции $f$ и $g$ неотрицательны на $[a,b)$ и интегрируемы на каждом отрезке, содержащемся в $[a,b)$. Предположим, что $f(x)\leq g(x)$ для любого $x\in [a,b)$. Тогда:

  1. из сходимости интеграла $I_{2}=\int_{a}^{b}{g(x)dx}$ следует сходимость интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$;
  2. из расходимости интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$ следует расходимость интеграла $I_{2}=\int_{a}^{b}{g(x)dx}$;
Спойлер
  1. Из $ 0\leq f(x) \leq g(x)$ следует, что $\int_{a}^{\xi}{f(x)dx}\leq \int_{a}^{\xi}{g(x)dx}$ $(1)$, $\xi \in [a,b)$. Если сходится интеграл $I_{2}=\int_{a}^{b}{g(x)dx}$, т.е. существует конечный $\lim_{\xi \rightarrow b-0} \int_{a}^{\xi}{g(x)dx}=I_{2}$, где $I_{2}=sup_{a\leq\xi <b} \int_{a}^{\xi}{g(x)dx}$, то из $(1)$ следует, что $\forall \xi \in [a,b)$ выполняется неравенство $\int_{a}^{\xi}{f(x)dx} \leq I_{2}$. Таким образом для неотрицательной функции $f(x)$ выполняется условие $\exists C: \forall \xi \in [a,b) \rightarrow \int_{a}^{\xi}{f(x)dx}\leq C$ (критерий сходимости интегралов от неотрицательных функций). Следовательно, интеграл $I_{2}$ сходится.
  2. Пусть $I_{1}$ расходится. Предположим, что  $I_{2}$ сходится, тогда по первому пункту сходится и $I_{1}$, что противоречит условию, следовательно $I_{2}$ тоже расходится.

[свернуть]

Спойлер

Сходится ли интеграл? $$I_{1}=\int\limits_{1}^{+\infty}{\frac{\cos^{4}3x}{\sqrt[5]{1+x^{6}}}dx}$$

Так как $$0\leq \frac{\cos^{4}3x}{\sqrt[5]{1+x^{6}}}\leq \frac{1}{\sqrt[5]{1+x^{6}}}\leq \frac{1}{x^{6/5}}$$ при $x\geq 1$ $I_{2}=\int_{1}^{+\infty}{\frac{1}{x^{6/5}}dx} < \infty$ (сходится), т.к. $\alpha =\frac{6}{5}>1$. Тогда, если интеграл $I_{2}$ сходится, то из сходимости интеграла $I_{2}$ следует сходимость интеграла $I_{1}$.
Ответ: $I_{1}$ сходится.

[свернуть]

Признак сравнения в предельной форме

Теорема

Пусть функции $f(x) $ и $g(x) $ неотрицательны на $[a,b)$ и интегрируемы на каждом отрезке, содержащемся в $[a,b)$. Тогда, если для $\forall x \in [a,b)$ выполняются условие $f(x)\sim g(x)$ при $x\rightarrow b-0$  $(\lim_{x \rightarrow b-0}\frac{f(x)}{g(x)}=1)$. Тогда интегралы $I_{1}=\int_{a}^{b}{f(x)dx}$ и $I_{2}=\int_{a}^{b}{g(x)dx}$ сходятся или расходятся одновременно (ведут себя одинаково).

Спойлер

Согласно условию $\lim\limits_{x \rightarrow b-0}\frac{f(x)}{g(x)}=1:$ $$\forall \varepsilon >0 \exists \delta _{\varepsilon}>0: b-\delta <x<b \Rightarrow \left|\frac{f(x)}{g(x)}-1 \right| < \varepsilon$$ или, что то же самое $$\forall \varepsilon >0 \exists \delta (\varepsilon)\in [a,b):\forall x \in[\delta (\varepsilon ),b) \rightarrow \left|\frac{f(x)}{g(x)}-1 \right| < \varepsilon $$ Выберем $\varepsilon =\frac{1}{2}$, найдем $\delta (\frac{1}{2})=c$ такое, что $b-c<x<b$ $$\left|\frac{f(x)}{g(x)}-1 \right|<\frac{1}{2} \Leftrightarrow -\frac{1}{2}<\frac{f(x)}{g(x)}-1<\frac{1}{2}\Leftrightarrow$$ $$\Leftrightarrow \frac{1}{2}<\frac{f(x)}{g(x)}<\frac{3}{2}\Leftrightarrow \frac{1}{2}g(x)<f(x)<\frac{3}{2}g(x), \forall x \in [b-c,b]$$ Так как функции $f(x)$ и $g(x)$ не имеют особых точек на промежутке $[a,b)$, то интегралы $I_{1}$ и $I_{2}$ сходятся тогда и только тогда, когда сходятся интегралы соответственно от функций $f(x)$ и $g(x)$ на промежутке $[b-c,b)$. Если сходится интеграл $I_{2}$ (а значит и $\int_{b-c}^{b}{g(x)dx}$), то из равенства $f(x)<\frac{3}{2}g(x)$ по признаку сравнения в форме неравенств следует сходимость интеграла $\int_{b-c}^{b}{f(x)dx}$, а это равносильно сходимости интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$. Аналогично, из $\frac{1}{2}g(x)<f(x)$ заключаем, что из сходимости интеграла $I_{1}=\int_{a}^{b}{f(x)dx}$ следует сходимость интеграла $I_{2}=\int_{a}^{b}{g(x)dx}$.
Если же один из интегралов расходится, например, $I_{1}$. Тогда предположим, что $I_{2}$ сходится, следовательно, по доказанному выше $I_{1}$ тоже должен сходиться, что противоречит условию, следовательно $I_{2}$ тоже расходится. Т.е. если один из интегралов расходится, то расходится и другой.

[свернуть]

Замечание

Если функция $f(x)$ интегрируема на отрезке $[a,\xi]$ при $\forall \xi \geq \alpha$ и если $f(x)\sim \frac{A}{x^{\alpha}}$ при $x\rightarrow +\infty$, где $A\neq 0$, то интеграл $\int_{\alpha }^{+\infty}{f(x)dx}$ сходится при $\alpha >1$ и расходится при  $\alpha \leq 1$.

Спойлер

Сходится ли интеграл? $$\int\limits_{0}^{1}{\frac{\ln(1+x)}{x^{2}}dx}$$
$$\int\limits_{0}^{1}{\frac{\ln(1+x)}{x^{2}}dx}=\left[\frac{\ln(1+x)}{x^{2}}\sim \frac{x}{x^{2}}=\frac{1}{x} \right]$$ (можем заменить функцию эквивалентной т.к. $\frac{\ln(1+x)}{x^{2}}\rightarrow 0$). Тогда интеграл $\int_{0}^{1}{\frac{dx}{x}}=\infty$ расходится (т.к. $\alpha =1$).
Ответ: интеграл расходится.

[свернуть]

Тест по теме: Признак сравнения несобственных интегралов

Этот тест покажет ваши знания по данной теме.

Таблица лучших: Тест по теме: Признак сравнения несобственных интегралов

максимум из 15 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных