Processing math: 100%

18.1.1 Несобственные интегралы I рода (интегралы по неограниченным промежуткам)

Пусть функция f задана на промежутке [a,+), где aR, и интегрируема по Риману на каждом отрезке [a,ξ), где a<ξ<+. Выражение +af(x)dx называют несобственным интегралом I рода. Если существует limξ+ξaf(x)dx то этот несобственный интеграл называют сходящимся, а его значение полагают равным:
af(x)dx=limξ+ξaf(x)dx.
Если же не существует конечного предела, то несобственный интеграл называют расходящимся.

Аналогично определяется несобственный интеграл:
af(x)dx=limηaηf(x)dx.

Пусть теперь функция f задана на всей действительной прямой и интегрируема по Риману на любом отрезке [η,ξ], где <η<ξ<+.
Если существует конечный двойной предел limξ+ηξηf(x)dx,то несобственный интеграл +f(x)dx называется сходящимся, а его значение полагают равным +f(x)dx=limξ+ηξηf(x)dx.

Утверждение. Сходимость интеграла +f(x)dx равносильна тому, что сходятся оба интеграла +af(x)dx и af(x)dx, причем имеет место равенство +f(x)dx=af(x)dx++af(x)dx
где a – произвольное действительное число.

Пусть при некотором aR интегралы +af(x)dx и af(x)dx сходятся. Тогда для <η<ξ<+ будем иметь
ξηf(x)dx=aηf(x)dx+ξaf(x)dx
Отсюда, переходя к пределам при ξ+ и η, получаем
limξ+ηξηf(x)dx=limξ+ηaηf(x)dx+limξ+ηξaf(x)dx==af(x)dx++af(x)dx
т. е. интеграл +f(x)dx сходится и для него справедливо равенство +f(x)dx=af(x)dx++af(x)dx.

Для доказательства обратного утверждения зафиксируем произвольное aR и предположим, что существует
+f(x)dx=limξ+ηξηf(x)dx.
Тогда, в силу критерия Коши существования двойного предела, отсюда
следует, что для любого ε>0 найдется такое A, что для любых ξ,ξ>A и для любых η,η<A справедливо неравенство
|ξηf(x)dxξηf(x)dx|<ε
Зафиксируем ε>0 и найдем такое A. Можем считать, что A>|a|. Выберем η=η=η<A и ξ,ξ>A. Тогда получим
|ξξf(x)dx|=|ξηf(x)dxξηf(x)dx|<ε,
т. е. выполнено условие критерия Коши существования предела
limξ+ξaf(x)dx.
Отсюда следует, что интеграл +af(x)dx сходится. Аналогично получаем, что и интеграл af(x)dx также сходится. Имеем
af(x)dx++af(x)dx=limηaηf(x)dx+limξ+ξaf(x)dx==limξ+η(aηf(x)dx+ξaf(x)dx)=limξ+ηξηf(x)dx=+f(x)dx Последний предел существует в силу условия, а выражение справа не
зависит от a. Тем самым доказано +f(x)dx=af(x)dx++af(x)dx для любого aR.

Пример 1. Вычислим +0dx1+x2=limξ+ξ0dx1+x2=limξ+arctgx|ξ0=limξ+arctgx=π2.

Пример 2. Несобственный интеграл +0sinxdx. расходится. В самом деле, ξ0sinxdx=cosx|ξ0=1cosξ не имеет предела.

Примеры решения задач

Пример 1

Пример 2

Пример 3

Несобственные интегралы по неограниченным промежуткам

Для закрепления пройденного материала предлагается пройти тест.

Литература

  1. Коляда В.И.,Кореновский А.А. Курс лекций по математическому анализу / В.И.Коляда.-Одесса: Изд-во «Астропринт», 2010. т.2. -С.102-105.
  2. Каплан И.А. Практические занятия по высшей математике / И.А.Каплан. -Харьков: Изд-во Харьковского университета, 1967. ч.3. -С.760-761.
  3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления/ Г.М.Фихтенгольц -Москва: Изд-во «Наука», 1969. т.2. -С.553.
  4. Лысенко З.М. Конспект лекций по математическому анализу.

18.1.2 Несобственные интегралы II рода (интегралы от неограниченных функций)

Пусть функция f задана на полуинтервале [a,b), где <a<b<+ и интегрируема по Риману на любом отрезке [a,ξ], где a<ξ<b. Если существует конечный предел limξb0ξaf(x)dx, то несобственный интеграл второго рода baf(x)dx называют сходящимся и полагают baf(x)dx=limξb0ξaf(x)dx. В противном случае несобственный интеграл называют расходящимся.

Замечание 1. Предполагается, что функция f неограничена в любой левой полуокрестности точки b. Действительно, если функция f ограничена на [a,b) и интегрируема на каждом отрезке [a,ξ] при любом ξ<b, то, используя критерий интегрируемости функции в смысле Римана в терминах колебаний, легко можно показать, что функция f интегрируема по Риману на отрезке [a,b] (в самой точке b функцию можно доопределить произвольным образом и это не влияет ни на свойство функции быть интегрируемой, ни на величину интеграла Римана baf(x)dx).

Замечание 2. Если функция f интегрируема по Риману на отрезке [a,b], то, как было установлено ранее, интеграл с переменным верхним пределом φ(ξ)=ξaf(x)dx является непрерывной на [a,b] функцией. В частности, существует limξb0φ(ξ)=baf(x)dx. Это означает, что для интегрируемой в смысле Римана функции интеграл в несобственном смысле также существует и их значения совпадают.

Если функция f неограничена в любой левой полуокрестности точки b, то эту точку называют особой точкой и говорят, что в точке b функция имеет особенность. Иногда это обозначают так: (b)af(x)dx. Аналогично определяется b(a)f(x)dx с особенностью в точке a. Т.е., полагаем
b(a)f(x)dx=baf(x)dx=limηa+0bηf(x)dx,
если предел справа существует. В этом случае интеграл называют сходящимся, в противном случае – расходящимся.

Пример 1. У интеграла 10dx1x2 имеется особенность в точке x=0. Имеем
10dx1x2=limξ10ξ0dx1x2=limξ10arcsinξ=arcsin1=π2.

Пример 2. Рассмотрим интеграл 10dxxα. при α>0.
Он имеет особенность в точке x=0. При α1 имеем: 1ηdxxα=11αx1α|1η=11αη1α1α, а если α=1, то 1ηdxxα=lnx|1η=ln1η.

Если α<1, то существует limη0+1ηdxxα=11α.

Если же α1, то предел limη0+1ηdxxα не существует. Следовательно, 1ηdxxα=11α(α<1)
и интеграл расходится при α1.

Интеграл с несколькими особенностями определяется как сумма интегралов по таким промежуткам, на каждом из которых имеется лишь одна особенность. При этом интеграл называют сходящимся, если сходятся все
интегралы указанной суммы. Если хотя бы один из них расходится, то и исходный интеграл называют расходящимся.

Пример. Интеграл +dxx3x14x2 определяется как
+dxx3x14x2=a+0a+b0+1b+c1+2c+d2++d, где <a<0<b<1<c<2<d<+.

Примеры решения задач

Пример 1

Пример 2

Несобственные интегралы от неограниченных функций

Пройдите этот тест, чтобы проверить свои знания по только что прочитанной теме.

Литература

  1. Коляда В.И.,Кореновский А.А. Курс лекций по математическому анализу / В.И.Коляда.-Одесса: Изд-во «Астропринт», 2010. ч.2. -С.106-108.
  2. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления / Г.М.Фихтенгольц.-Москва: Изд-во «Наука», 1964. т.2. -С.579.
  3. Кудрявцев Л.Д. Краткий курс математического анализа / Л.Д.Кудрявцев. -Москва: изд-во «Наука», 1989. -С.397.
  4. Лысенко З.М. Конспект лекций по математическому анализу.

М1153. Задача о наибольшем числе поворотов замкнутого маршрута шахматной ладьи

Задача из журнала «Квант» ( 1989 год, №3).

Какое наибольшее число поворотов может содержать замкнутый маршрут ладьи, обходящей по одному разу все клетки шахматной доски 8×8 клеток?

Решение

Ответ: 56 поворотов. Маршрут с 56 поворотами показан на рисунке 1.

Центрируем изображение
Рис.1

Докажем, что это число нельзя превысить.

Доказательство

Назовем клетку доски коридором для данного маршрута, если в ней ладья не делает поворота. Заметим, что из каждой пары клеток, смежных с угловыми, хотя бы одна является коридором — иначе в клетке, соседней с соответствующей угловой по диагонали, ладья побывает дважды (рис.2).

Центрируем изображение
Рис.2

Разобьем доску на 4 квадрата 4×4. В каждом из них есть коридор, соседний с угловой клеткой. Покажем, что кроме него есть еще хотя бы один коридор. Рассмотрим, например, левый нижний квадрат (рис.3) и допустим, что клетка a2 — коридор.

Центрируем изображение
Рис.3

Предположим, что других коридоров в этом квадрате нет. Тогда, очевидно, что маршрут будет последовательно проходить по клеткам b2, b1, a1, a2, a3, b3, b4. Следующей будет клетка а4, иначе мы в нее никогда не попадем (или маршрут не замкнется). Теперь можно аналогично продолжить маршрут в другую сторону b2, c2, c1, d1, d2, e2. Из полученного рисунка видно, что маршрут должен содержать участок d3, c3, c4, следовательно одна из клеток — d3 или с4 — коридор (это доказывается также, как для угловых клеток — см. начало решения).

Итак, число коридоров не меньше 2×4=8, а число поворотов — не больше 648=56.

М.Г.Хованов