База и ранг системы векторов. Нахождение базы и вычисление ранга (приведением системы к трапециевидной форме)

Спойлер


Определение:
Базой ненулевой системы векторов называется эквивалентная ей линейно независимая подсистема. Нулевая система базы не имеет.

Свойство 1:
База линейной независимой системы совпадает с ней самой.

Пример:
[latex] e_{1}=<1, 0, 0>[/latex]
[latex]e_{2}=<0, 1, 0>[/latex]
[latex]e_{3}=<0, 0, 1>[/latex]
[latex]<e_{1}, e_{2}, e_{3}> — [/latex] Система линейно независимых векторов поскольку ни один из векторов не может быть линейно вырожен через остальные.

Свойство 2:(Критерий Базы)
Линейно независимая подсистема данной системы является её базой тогда и только тогда, когда она максимально линейно независима.

Доказательство:
Дана система [latex]S=<a_{1}, a_{2}, \ldots, a_{n}>[/latex]
Необходимость
Пусть [latex]S_{1}=<a_{1}, a_{2}, \ldots, a_{k}>[/latex] база [latex]S[/latex].
Тогда по определению [latex]S_{1}\sim S[/latex] и, если [latex]S_{2}=<a_{1},a_{2},\ldots,a_{k},a_{j}>[/latex], где [latex]k+1\leq j\leq n[/latex], система линейно зависима, так как [latex]a_{j}[/latex] линейно вырожается через [latex]S_{1}[/latex], следовательно [latex]S_{1}[/latex] максимально линейно независима.
Достаточность
Пусть [latex]S_{1} — [/latex]максимально линейно независимая подсистема, тогда [latex]\forall a_{j}[/latex]  где [latex]k+1\leq j\leq n[/latex].
[latex]S_{2}=<a_{1}, a_{2}, \ldots, a_{k}, a_{j}> — [/latex] линейно зависима [latex]\Rightarrow S_{2}[/latex] линейно вырожается через [latex]S_{1}\Rightarrow [/latex] [latex]S_{1}\sim S[/latex] следовательно [latex]S_{1}[/latex] база системы [latex]S[/latex].

Свойство 3:(Основное свойство базы)
Каждый вектор системы [latex]S[/latex] вырожается через базу единственным образом.

Доказательство
Пусть вектор [latex]a[/latex] вырожается через базу двумя способами,  тогда:
[latex]a=\alpha_{1}e_{1}+\ldots+\alpha_{k}e_{k}[/latex]
[latex]a=\beta_{1}e_{1}+\ldots+\beta_{k}e_{k}[/latex], тогда
[latex]\alpha_{1}e_{1}+\ldots+\alpha_{k}e_{k}=\beta_{1}e_{1}+\ldots+\beta_{k}e_{k}[/latex]
[latex](\alpha_{1}-\beta_{1})e_{1}+\ldots+(\alpha_{k}-\beta_{k})e_{k}=0[/latex]
[latex]\alpha_{1}-\beta_{1}=\ldots=\alpha_{k}-\beta_{k}=0\Rightarrow [/latex]    [latex]\alpha_{1}=\beta_{2}, \ldots, \alpha_{k}=\beta_{k}[/latex]

Определение:
Рангом ненулевой системы векторов линейного пространства называется число векторов её базы. Ранг нулевой системы по определению равен нулю.

Свойства ранга:
1) Ранг линейно независимой системы совпадает с числом её векторов.
2) Ранг линейно зависимой системы меньше числа её векторов.
3) Ранги эквивалентных систем совпадают — [latex]S_{1}\sim S_{2}\Rightarrow [/latex] rank [latex]S_{1}=[/latex] rank [latex]S_{2}[/latex].
4) Ранг под системы меньше либо равен рангу системы.
5) Если [latex]S_{1}\subset S_{2}[/latex] и rank [latex]S_{1}=[/latex] rank [latex]S_{2}[/latex], тогда [latex]S_{1}[/latex] и [latex]S_{2}[/latex] имеют общую базу.
6) Ранг системы не изменить, если в неё добавить вектор, являющийся линейной комбинацией остальных векторов системы.
7) Ранг системы не изменить, если из неё удалить вектор, являющийся линейной комбинацией остальных векторов.

[свернуть]

Для нахождения ранга системы векторов, нужно использовать метод Гаусса и привести систему к треугольной или трапециевидной форме.

Пример:
[latex]a_{1}=(1, 1, 1, 1)[/latex]
[latex]a_{1}=(1, -1, 0, 2)[/latex]
[latex]a_{1}=(2, 2, 1, -1)[/latex]
[latex]a_{1}=(0, 1, 3, 0)[/latex]

Преобразуем данные вектора в матрицу для нахождения базы.
Получим:
[latex] \begin{pmatrix} 1 & 1 & 1 & 1\\ 1 & -1 & 0 & 2\\ 2 & 2 & 1 & -1\\ 0 & 1 & 3 & 0 \end{pmatrix} [/latex]

Теперь при помощи метода Гаусса будем преобразоывавать матрицу к трапецеидальному виду:

1) В нашей основной матрице, будем анулировать весь первый столбец кроме первой строки  от второй отнимим первую умноженную на [latex]-1[/latex], от третьей отнимим первую умноженную на [latex]-2[/latex], а от четвётой мы ничего не будем отнимать так как первый элемент четвёртой строки, то есть пересечение первого столбца и четвёртой строки, равен нулю. Получим матрицу [latex]S_{2}[/latex] :
[latex] S_{2} = \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & -2 & -1 & 1\\ 0 & 0 & -1 & -3\\ 0 & 1 & 3 & 0 \end{pmatrix} [/latex]
2) Теперь в матрице [latex]S_{2}[/latex], поменяем местами строки 2, 3 и 4 для простоты решения, что бы на месте элемента [latex]a_{22}[/latex] была еденица. Четвёртую строку поменяем поставим вместо второй, вторую вместо третьей и третью на место четвёртой. Получим матрицу [latex]S_{3}[/latex] :
[latex] S_{3} = \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 3 & 0\\ 0 & -2 & -1 & 1\\ 0 & 0 & -1 & -3 \end{pmatrix} [/latex]
3)В матрице [latex]S_{3}[/latex] анулируем все элементы под элементом [latex]a_{22}[/latex].
Поскольку вновь элемент [latex]a_{42}[/latex] нашей матреци равен нулю, мы ничего не отнимаем от четвёртой строки, а к третьей добавим вторую умноженную на [latex]2[/latex]. Получим матрицу [latex]S_{4}[/latex] :
[latex] S_{4} = \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 3 & 0\\ 0 & 0 & 5 & 1\\ 0 & 0 & -1 & -3 \end{pmatrix} [/latex]
4)Вновь поменяем в матрице [latex]S_{4}[/latex] строки 3 и 4 местами. Получим матрицу [latex]S_{5}[/latex] :
[latex] S_{5} = \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 3 & 0\\ 0 & 0 & -1 & -3\\ 0 & 0 & 5 & 1 \end{pmatrix} [/latex]
5)В матрице [latex]S_{5}[/latex] прибавим к червётрой строке третью, умноженную на 5. Получим матрицу [latex]S_{6}[/latex], которая будет иметь треугольный вид:
[latex] S_{6} = \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 3 & 0\\ 0 & 0 & -1 & -3\\ 0 & 0 & 0 & -14 \end{pmatrix}[/latex]

Системы [latex]S_{1}\sim S_{6}[/latex], их ранги совпадают в силу свойств ранга и их ранг равен rank [latex]S_{1} =[/latex] rank [latex]S_{6} =4[/latex]

Замечания:
1) В отличие от традиционного метода Гаусса, если в строке матрицы все элементы делятся на определённое число, мы не имеем право сокращать строку матрицы в силу действия свойств матрицы. Если мы захотим сократить строку на определённое число, придётся сокращать всю матрицу на это число.
2) В случае, если мы получим линейно зависящую строку, мы можем её убрать из нашей матрицы и заменить на нулевую строку.
Пример:
[latex] A = \begin{pmatrix} 1 & 1 & 1 & 1\\ 2 & 2 & 2 & 2\\ 0 & 0 & 5 & 1\\ 0 & 0 & -1 & -3 \end{pmatrix} [/latex]
Сразу видно что вторая строка выражается через первую, если домножить первую на 2.
В тиаком случае можем заменить всю вторую строку на нулевую. Получим:
[latex] A = \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 5 & 1\\ 0 & 0 & -1 & -3 \end{pmatrix} [/latex]
В итоге, приведя матрицу, либо к треугольному, либо к трапецеидальному виду, где у неё нету линейно зависящих векторов, все не нулевые векторы матрицы и будут базой матрицы, а их количество рангом.

Вот так же пример системы векторов в виде графика:
Дана система [latex]S=<e_{1}, e_{2}, e_{3}, e_{4}>[/latex] где [latex]e_{1}=(1, 0)[/latex], [latex]e_{2}=(0, 1)[/latex], [latex]e_{3}=(2, 1)[/latex] и [latex]e_{4}=(1.5, 3)[/latex]. Базой данной системы очевидно буду вектора [latex]e_{1}[/latex] и [latex]e_{2}[/latex], поскольку через них выражаются векторы [latex]e_{3}, e_{4}[/latex].
Данная система в графическом виде будет иметь вид:
svg1

Литература:

  1. Воеводин В.В. Линейная алгебра. М.: Наука, 1980 с. 52-55.
  2. Проскуряков И.В. Сборник задач по линейной алгебре. М.: Наука, 1984 с. 90-99.
  3. Белозёров Г.С. Конспект лекций по линейной алгебре.

База и ранг системы векторов. Нахождение базы и вычисление ранга (приведением системы к трапециевидной форме)

Тестовые вопросы по вышеизложенному материалу.

Таблица лучших: База и ранг системы векторов. Нахождение базы и вычисление ранга (приведением системы к трапециевидной форме)

максимум из 11 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Теорема о представлении элементов конечной циклической группы

Определение циклической группы

Пусть дана группа [latex](G, \cdot)[/latex]. Если [latex]\exists g_{0}\in G [/latex] такое, что [latex]\forall g\in G[/latex], [latex]\exists n\in \mathbb Z[/latex]: [latex]g=g_{0}^n[/latex], то [latex](G, \cdot)[/latex] называется циклической группой  и пишут [latex]G=<g_{0}>_{n}[/latex], где [latex]g_{0}[/latex] образующая и количество элементов, порядок группы, [latex]|G|=n[/latex]. Циклическая группа [latex]G[/latex] называется конечной, если она имеет конечное число элементов, в противном случае группа называется бесконечной.

Теорема
Пусть дана циклическая группа [latex](G, \cdot)[/latex] и [latex]G=<g_{0}>_{n}[/latex], тогда эта группа имеет следующий вид: [latex]G=\{ g_{0}^0=1, g_{0}, g_{0}^2, g_{0}^3, \dots, g_{0}^{n-1}\}[/latex].

Доказательство
Для доказательства покажем что все элементы нашей группы различные, иначе количество элементов в группе будет меньше её порядка.
Пусть [latex]\exists i<j[/latex] такие, что [latex] 0\leq i<j \leq{n-1}[/latex] и [latex] g_{0}^{i} = g_{0}^{j}\Rightarrow[/latex] [latex]g_{0}^{j-i} = 1[/latex], тогда [latex]\exists m\in \mathbb Z : m=j-i[/latex], следовательно [latex]1\leq m\leq{n-1}[/latex] и [latex]g_{0}^m=1.[/latex] Отсюда [latex]\forall g\in G, g=g_{0}^t, t\in \mathbb Z[/latex] и [latex]t=mq+r, 0\leq r<m,[/latex] тогда [latex]g_{0}^t=g_{0}^{mq+r}=[/latex][latex](g_{0}^m)^q\cdot g_{0}^r\Rightarrow[/latex] [latex]g_{0}^t =1\cdot g_{0}^r=g_{0}^r[/latex], это значит что все элементы группы будут равны [latex]g_{0}^r[/latex], где [latex]\forall t\in \mathbb Z[/latex] существует свой [latex]r[/latex],но [latex]0\leq r<m[/latex], а [latex]1\leq m\leq{n-1}[/latex] мы получаем противоречие, поскольку мы не получим всю группу.

Таким образом [latex]G=\{ g_{0}^0=1, g_{0}, g_{0}^2, g_{0}^3, \dots, g_{0}^{n-1}\}[/latex].

Примеры циклических групп
[latex]A=\{1, 2, 2^2, 2^3, 2^4, 2^5, 2^6\}[/latex] — Конечная иклическая группа, поскольку каждый элемент является значением [latex]2^k, 0\leq k\leq 6[/latex], отсюда образующей этой группы является [latex]2[/latex] и [latex]A=<2>_{7}[/latex].

[latex]A=\{1,\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \frac{1}{2^5}, \frac{1}{2^6} \}[/latex] — Конечная циклическая группа, каждый элемент является значением [latex](\frac{1}{2})^k, 0\leq k\leq 6[/latex], образующей является [latex]\frac12[/latex] и [latex]A=<\frac12>_{7}[/latex].

Литература

  1. Воеводин В.В. Линейная алгебра. М.: Наука, 1980 с. 24-28.
  2. Фаддеев Д.К. Лекции по алгебре. М.: Наука, 1984 с. 246-248.
  3. Белозёров Г.С. Конспект лекций по линейной алгебре.

 

Теорема о представлении элементов конечной циклической группы

Тест на тему «Теорема о представлении элементов конечной циклической группы»:

Таблица лучших: Теорема о представлении элементов конечной циклической группы

максимум из 8 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных