Для нахождения ранга системы векторов, нужно использовать метод Гаусса и привести систему к треугольной или трапециевидной форме.
Пример:
[latex]a_{1}=(1, 1, 1, 1)[/latex]
[latex]a_{1}=(1, -1, 0, 2)[/latex]
[latex]a_{1}=(2, 2, 1, -1)[/latex]
[latex]a_{1}=(0, 1, 3, 0)[/latex]
Преобразуем данные вектора в матрицу для нахождения базы.
Получим:
[latex] (11111−102221−10130)
Теперь при помощи метода Гаусса будем преобразоывавать матрицу к трапецеидальному виду:
1) В нашей основной матрице, будем анулировать весь первый столбец кроме первой строки от второй отнимим первую умноженную на [latex]-1[/latex], от третьей отнимим первую умноженную на [latex]-2[/latex], а от четвётой мы ничего не будем отнимать так как первый элемент четвёртой строки, то есть пересечение первого столбца и четвёртой строки, равен нулю. Получим матрицу [latex]S_{2}[/latex] :
[latex] S_{2} = (11110−2−1100−1−30130)
2) Теперь в матрице [latex]S_{2}[/latex], поменяем местами строки 2, 3 и 4 для простоты решения, что бы на месте элемента [latex]a_{22}[/latex] была еденица. Четвёртую строку поменяем поставим вместо второй, вторую вместо третьей и третью на место четвёртой. Получим матрицу [latex]S_{3}[/latex] :
[latex] S_{3} = (111101300−2−1100−1−3)
3)В матрице [latex]S_{3}[/latex] анулируем все элементы под элементом [latex]a_{22}[/latex].
Поскольку вновь элемент [latex]a_{42}[/latex] нашей матреци равен нулю, мы ничего не отнимаем от четвёртой строки, а к третьей добавим вторую умноженную на [latex]2[/latex]. Получим матрицу [latex]S_{4}[/latex] :
[latex] S_{4} = (11110130005100−1−3)
4)Вновь поменяем в матрице [latex]S_{4}[/latex] строки 3 и 4 местами. Получим матрицу [latex]S_{5}[/latex] :
[latex] S_{5} = (1111013000−1−30051)
5)В матрице [latex]S_{5}[/latex] прибавим к червётрой строке третью, умноженную на 5. Получим матрицу [latex]S_{6}[/latex], которая будет иметь треугольный вид:
[latex] S_{6} = (1111013000−1−3000−14)
Системы [latex]S_{1}\sim S_{6}[/latex], их ранги совпадают в силу свойств ранга и их ранг равен rank [latex]S_{1} =[/latex] rank [latex]S_{6} =4[/latex]
Замечания:
1) В отличие от традиционного метода Гаусса, если в строке матрицы все элементы делятся на определённое число, мы не имеем право сокращать строку матрицы в силу действия свойств матрицы. Если мы захотим сократить строку на определённое число, придётся сокращать всю матрицу на это число.
2) В случае, если мы получим линейно зависящую строку, мы можем её убрать из нашей матрицы и заменить на нулевую строку.
Пример:
[latex] A = (11112222005100−1−3)
Сразу видно что вторая строка выражается через первую, если домножить первую на 2.
В тиаком случае можем заменить всю вторую строку на нулевую. Получим:
[latex] A = (11110000005100−1−3)
В итоге, приведя матрицу, либо к треугольному, либо к трапецеидальному виду, где у неё нету линейно зависящих векторов, все не нулевые векторы матрицы и будут базой матрицы, а их количество рангом.
Вот так же пример системы векторов в виде графика:
Дана система [latex]S=<e_{1}, e_{2}, e_{3}, e_{4}>[/latex] где [latex]e_{1}=(1, 0)[/latex], [latex]e_{2}=(0, 1)[/latex], [latex]e_{3}=(2, 1)[/latex] и [latex]e_{4}=(1.5, 3)[/latex]. Базой данной системы очевидно буду вектора [latex]e_{1}[/latex] и [latex]e_{2}[/latex], поскольку через них выражаются векторы [latex]e_{3}, e_{4}[/latex].
Данная система в графическом виде будет иметь вид:
Литература:
- Воеводин В.В. Линейная алгебра. М.: Наука, 1980 с. 52-55.
- Проскуряков И.В. Сборник задач по линейной алгебре. М.: Наука, 1984 с. 90-99.
- Белозёров Г.С. Конспект лекций по линейной алгебре.
База и ранг системы векторов. Нахождение базы и вычисление ранга (приведением системы к трапециевидной форме)
Тестовые вопросы по вышеизложенному материалу.
Таблица лучших: База и ранг системы векторов. Нахождение базы и вычисление ранга (приведением системы к трапециевидной форме)
Место | Имя | Записано | Баллы | Результат |
---|---|---|---|---|
Таблица загружается |