Теорема об умножении определителей

Теорема. Определитель произведения нескольких квадратных матриц порядка $n$ равен произведению определителей этих матриц: $$\textrm{det}(A \cdot B)=\textrm{det}(A) \cdot \textrm{det}(B)$$ или полная формула: $$\textrm{det}\left (\prod_{i=1}^{k}A_i\right )= \prod_{i=1}^{k}\textrm{det} A_i, A_i\in\left(P\right), i=1, \ldots, k.$$

Рассмотрим случай $k=2$. Допустим заданы две матрицы $A=\left \| a_{ij} \right \|\in M_n\left ( P \right )$ и $B=\left \| b_{ij} \right \|\in M_n\left ( P \right )$. Воспользуемся вспомогательной блочной матрицей $C=\begin{Vmatrix}A & 0\\-E & B\end{Vmatrix}$ размера $2n\times 2n$, определитель которой имеет вид: $$\Delta = \begin{vmatrix}
a_{11}&a_{12} &\cdots & a_{1n} &0 & 0 & \cdots & 0\\
a_{21}&a_{22} &\cdots & a_{2n} &0 & 0 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot &\cdot & \cdot & \cdot\\
a_{n1}&a_{n2} &\cdots & a_{nn} &0 & 0 & \cdots & 0\\
-1& 0 & \cdots & 0 & b_{11} & b_{12} & \cdots & b_{1n}\\
0 & -1 & \cdots & 0 & b_{21} & b_{22} & \cdots & b_{2n} \\
\cdot & \cdot & \cdot & \cdot & \cdot &\cdot & \cdot & \cdot\\
0 & 0 & \cdots & -1 & b_{n1} & b_{n2} & \cdots & b_{nn}
\end{vmatrix}$$
Вычислим $\Delta$ используя теорему Лапласа. Замечаем, что отличным от нуля будет только $\textrm{det}(A)$. Следовательно, $\Delta=\textrm{det}(A) \cdot \textrm{det}(B)$. Теперь с помощью элементарных преобразований изменим $\Delta$ так, что в итоге получим определитель вида $\begin{vmatrix}A & C\\ -E & O\end{vmatrix}$. Где $C$ является произведением матриц $A$ и $B$. Первый столбец умножим на $b_{11}$ и прибавим к $\left ( n+1 \right)$-му столбцу, второй на элемент $b_{21}$ и вновь прибавим к $\left ( n+1 \right )$-му столбцу. Так же обнулим остальные элементы матрицы $B$. Записав подробнее полученный определитель имеем: $$\Delta = \begin{vmatrix}
a_{11}&a_{12} &\cdots & a_{1n} & c_{11} & c_{12} & \cdots & c_{1n}\\
a_{21}&a_{22} &\cdots & a_{2n} & c_{21} & c_{22} & \cdots & c_{2n}\\
\cdot & \cdot & \cdot & \cdot & \cdot &\cdot & \cdot & \cdot\\
a_{n1}&a_{n2} &\cdots & a_{nn} & c_{n1} & c_{n2} & \cdots & c_{nn} \\
-1& 0 & \cdots & 0 & 0 & 0 & \cdots & 0\\
0 & -1 & \cdots & 0 & 0 & 0 & \cdots & 0\\
\cdot & \cdot & \cdot & \cdot & \cdot &\cdot & \cdot & \cdot\\
0 & 0 & \cdots & -1 & 0 & 0 & \cdots & 0
\end{vmatrix}$$ Снова вычислим определитель $\Delta$, разложением по последним $n$ столбцам. В этом случае отличным от нуля минором $n-$го порядка будет определитель матрицы $C$. Поэтому $\Delta= \textrm{det}C\cdot\textrm{det}\left (-E\right )=\textrm{det}C\cdot\left ( -1 \right )^{n}\cdot\left (-1\right )^{S_1+S_2},$ где $$S_1=\sum_{k=n+1}^{2n}k, \textrm{ a } S_2=\sum_{k=1}^{n}k.$$ В результате получаем $\Delta=\textrm {det}C\cdot\left ( -1 \right )^{2n\left ( n^{2}+n \right )}=\textrm {det}C.$ Теперь, подставляя имеем доказательство теоремы: $$\Delta=\textrm {det}C=\textrm{det}(A \cdot B)=\textrm{det}(A) \cdot \textrm{det}(B).$$

Замечание Теорема остается верной для любого из возможных правил умножения матрицы на матрицу:

  1. строка на строку;
  2. строка на столбец;
  3. столбец на строку;
  4. столбец на столбец.

Теорема об умножении определителей является следствием формулы Бине-Коши. Это теорема об определителе произведения прямоугольных матриц, в случае если это произведение дает квадратную матрицу. Справедлива для матриц с элементами любого коммутативного кольца.

Теорема. Пусть даны две матрицы $A$ и $B$ размеров $\left ( m\times n \right )$ и $\left ( n\times m \right )$ соответственно. Определитель матрицы равен нулю, если $m > n$, и равен сумме произведений всех соответствующих миноров $m \leqslant n$. Миноры матриц $A$ и $B$ одинакового порядка, равного наименьшему из чисел n и m, называются соответствующими друг другу, если они стоят в столбцах матрицы $A$ и строках матрицы $B$ с одинаковыми номерами: $$\textrm{det}AB=\sum_{\gamma_1<\gamma_2<\cdots<\gamma_m }A_{\gamma_1<\gamma_2<\cdots<\gamma_m }B_{\gamma_1<\gamma_2<\cdots<\gamma_m },$$
где $A_{\gamma_1<\gamma_2<\cdots<\gamma_m }$ — минор матрицы $A$, составленный из столбцов с номерами $\gamma_1<\gamma_2<\cdots<\gamma_m$, и $B_{\gamma_1<\gamma_2<\cdots<\gamma_m }$ — минор матрицы $B$, составленный из строк с номерами $\gamma_1<\gamma_2<\cdots<\gamma_m$.

Аналогично доказательству теоремы об умножении определителей, используя теорему Лапласа в общей формулировке.

Примеры решения задач

Рассмотрим примеры решения задач связанных с рассмотренной теоремой. Читателю рекомендовано попытаться решить задачи самостоятельно, а затем сверить свое решение с приведенным ниже.

  1. Найти определитель произведения матриц: $$A=\begin{Vmatrix}3 & 4\\ 1 & -8\end{Vmatrix},
    B=\begin{Vmatrix}2 & 9\\ -1 & 5\end{Vmatrix}$$

    Решение

    Находим определители данных матриц второго порядка: $\begin{vmatrix}3 & -4\\ 1 & -6\end{vmatrix}=-18+4=-14
    $ и $\begin{vmatrix}2 & 7\\ 1 & 5\end{vmatrix}=10-7=3$. По теореме об определителе произведения матриц получаем: $$\textrm{det}(A \cdot B)=\textrm{det}\left (A \right ) \cdot \textrm{det}\left ( B \right )=\left ( -14\right )\cdot\left ( 3 \right )=-42.$$ Вычислим этот же определитель, находя произведение матриц: $$A\cdot B=\begin{vmatrix}3 & -4\\ 1 & -6\end{vmatrix}\cdot\begin{vmatrix}2 & 7\\ 1 & 5\end{vmatrix}=\begin{vmatrix}2 & 1\\ -4 & -23\end{vmatrix}$$ Следовательно, $\textrm{det}\left (A\cdot B\right )=-46+4=-42$. Результаты совпадают.

  2. Найти определитель матрицы пятого порядка: $$M=\begin{Vmatrix}
    1 & 2 & u & v & w\\
    3 & 4 & x & y & z\\
    0 & 0 & 3 & 2 & 1\\
    0 & 0 & 2 & 5 & 3\\
    0 & 0 & 3 & 4 & 2
    \end{Vmatrix}$$

    Решение

    Разобьём данную матрицу на 4 блока, $M=\begin{Vmatrix}A & B\\ O & C\end{Vmatrix}$ где $A=\begin{Vmatrix}1 & 2\\ 3 & 4\end{Vmatrix}$,
    $B=\begin{Vmatrix}u & v & w\\ x & y & z\end{Vmatrix}$, $O=\begin{Vmatrix}0 & 0 \\ 0 & 0\\ 0 & 0\end{Vmatrix}$, $C=\begin{Vmatrix}3 & 2 & 1\\ 2 & 5 & 3 \\3 & 4 & 2\end{Vmatrix}$.
    Представим блочную матрицу как произведение (в справедливости этого представления можно убедиться, найдя произведение по правилам умножения блочных матриц). $$D=\begin{Vmatrix}
    A & B\\
    C & D
    \end{Vmatrix} = \begin{Vmatrix}
    E_2 & O^T\\
    O & C
    \end{Vmatrix} \cdot \begin{Vmatrix}
    E_2 & B\\
    O & E_3
    \end{Vmatrix} \cdot \begin{Vmatrix}
    A & O^T\\
    O & E_3
    \end{Vmatrix} ,$$ где $E_2,E_3$ — единичные матрицы соответствующих порядков.
    $\begin{vmatrix}
    A & O^T\\
    O & E_3
    \end{vmatrix} = \textrm{det}A =\left | A \right |$, $\begin{vmatrix}
    E_2 & O^T\\
    O & C
    \end{vmatrix} = \textrm{det}C =\left | C \right|$.
    Матрица $\begin{Vmatrix}
    E_2 & B\\
    O & E_3
    \end{Vmatrix}$ — треугольная с единицами на главной диагонали, следовательно ее определитель равен $1$ По теореме об определителе произведения получаем:
    $$\begin{vmatrix}
    A & B\\
    O & C
    \end{vmatrix}= \begin{vmatrix}
    E_2 & O^T\\
    O & C
    \end{vmatrix}\ \cdot \begin{vmatrix}
    E_2 & B\\
    O & E_3
    \end{vmatrix}\ \cdot\begin{vmatrix}
    A & O^T\\
    O & E_3
    \end{vmatrix}=\left | C \right |\cdot 1\cdot\left | A \right |=\left | A \right |\cdot\left | C \right |$$ Найдем $\textrm{det}A$ и $\textrm{det}C$. $\begin{vmatrix}1 & 2\\ 3 & 4\end{vmatrix}=-2$ $\begin{vmatrix}3 & 2 & 1\\ 2 & 5 & 3 \\3 & 4 & 2\end{vmatrix}=-15-8-36+30+18=-3$. Подставляя, получаем, $\textrm{det}M=-2\cdot -3=-6$

  3. Смотрите также:

    1. Белозеров Г.С. Конспект лекций по линейной алгебре.
    2. В.А. Ильин, Э.Г. Позняк. Линейная алгебра; 5-е изд., стереотипное. ФИЗМАТЛИТ. — 2002. С. 38-39
    3. А.И. Кострикин. Введение в алгебру. Основы алгебры С.138-139
    4. Курош А.Г. Курс высшей алгебры М.: Наука, 1968, С.93-95
    5. Фаддеев Д. К. Лекции по алгебре: Учебное пособие для вузов.— M.: Наука. Главная редакция физико-математической литературы, 1984.— 416 с. C. 130-134

    Теорема об умножении определителей

    Тест на знание темы «Теорема об умножении определителей».

М827. О равновеликих треугольниках

 

Задача из журнала «Квант» (1984 год, 1 выпуск)

Условие

Известно, что четыре синих треугольника на рисунке 1 равновелики.

  1. Докажите, что три красных четырехугольника на этом рисунке также равновелики.
  2. Найдите площадь одного четырехугольника, если площадь одного синего треугольника равна 1.

Решение

Нам понадобится следующая часто применяемая

Лемма. Пусть $Р$ — точка на стороне $KL$ треугольника $KLM$. Тогда отношение площадей треугольников и равно $$S_{MKP}:S_{MPL}=|KP|:|PL|.$$ (Для доказательства достаточно заметить, что треугольники $MKP$ и $MPL$ имеют общую высоту проведенную из вершины $М$ (рис. 2).).

Рис. 1
Рис. 2
Рис. 3
  1. Введем обозначения, как  на рисунке 1. Заметим, что треугольники $AA_0C_0$ и $AA_0C_1$ равновелики (каждый из них составлен из треугольника $AA_0B_0$ и одного из из синих треугольников). Эти треугольники имеют общее основание $AA_0$, поэтому их вершины $C_0$ и $C_1$ равноудалены от прямой $AA_0$, то есть прямые $AA_0$ и $C_1C_0$ параллельны. Аналогично, $BB_0||A_1A_0$ и $CC_0||B_1B_0$. Рассмотрим трапецию $AA_0C_0C_1$ (рис. 3). Её диагонали пересекаются в точке $B_0$, а продолжения боковых сторон — в точке $B$. Эти точки лежат на прямой, соединяющей середины $D$ и $E$ её оснований $AA_0$ и $C_1C_0$. (Действительно, $B_0$ — центр гомотетии треугольников $B_0AA_0$ и $B_0C_0C_1$, а $B_0$ — центр гомотетии треугольников $BAA_0$ и $BC_1C_0$). А поскольку эта прямая параллельна $A_1A_0$, точка $B_0$ — середина отрезка $A_1A$. По лемме отсюда вытекает,что $S_{AB_0C}=S_{B_0A_1C}$. Следовательно (см. рис. 1), площади четырехугольников $AB_0A_0B_1$ и $CA_0C_0A_1$ равны. Аналогично доказывается, что и третий красный четырехугольник $BC_0B_0C_1$ имеет такую же площадь.

    Подумайте, останется ли верным утверждение этого пункта задачи, если потребовать равенства площадей только трех угловых синих треугольников.

  2. Площадь красного четырехугольника $s=1+\sqrt{5}$. Чтобы составить уравнение для нахождения искомой площади $s$, выразим двумя способами отношение $|BC_1|:|C_1A|$ с помощью леммы:$$|BC_1|:|C_1A|=S_{CBC_1}:S_{CC_1A}=(2s+2):(s+2)=S_{B_0BC_1}:S_{B_0C_1A}=(s/2):1.$$
    (Пояснения здесь требуют только равенство $S_{B_0BC_1}$. Как было показано выше, точка $E$ — середина $C_0C_1$ (рис. 3). Отсюда, опять-таки пользуясь леммой, легко вывести, что треугольники $B_0BC_1$ и $B_0BC_0$ равновелики. А вместе они составляют четырехугольник $BC_0B_0C_1$ площади $s$). Итак, $s$ удовлетворяет уравнению $$s^2-2s-4=0.$$ откуда $s=1+\sqrt{5}$.
  3. Б. И. Чиник, В. Н. Дубровский