Частные производные высших порядков

Частные производные высших порядков определяются при помощи индукции. Если говорить неформально, то каждая частная производная порядка больше чем 1 определяется, как производная от производной предыдущего порядка.
 

Определение

Частная производная (по независимым переменным) от частной производной порядка $m-1$ называется частной производной порядка $m(m=1,2,…)$.
Частная производная, полученная  с помощью дифференцирования по разным переменным, называется смешанной частной производной.
Частные производные высших порядков сохраняют все те же свойства, что и обычные частные производные.

Пример

Пусть дана функция $f(x,y,z)$.
Частной производной первого порядка по $x$ будет $\frac { df }{ dx } $.
Частной производной второго порядка по $x$ будет $\frac { { d }^{ 2 }f }{ d{ x }^{ 2 } } $
Смешанной производной третьего порядка будет $\frac { { d }^{ 3 }f }{ d{ x }^{ 2 }dy }$

Геометрический смысл частной производной

Спойлер

Пусть нам дана функция z(x,y), которая имеет частную производную в точке ${ M }_{ 0 }({ x }_{ 0 },{ y }_{ 0 })$. Пусть на рисунке изображена поверхность графика функции $z$. Проведем плоскость $y={y}_{0}$. Плоскость пересечет поверхность по линии T{ P }_{ 0 }. Проведем касательную ${ P }_{ 0 }A$ к линии ${ P }_{ 0 }T$. Прямая ${ P }_{ 0 }A$ образует угол $\alpha$ с осью $Ox$. Тангенс угла наклона к оси $Ox$ касательной к графику функции $f(x,{ y }_{ 0 })$ в точке ${ x }_{ 0 }$ и есть частная производная по $x$ функции $z$ в точке ${ M }_{ 0 }({ x }_{ 0 },{ y }_{ 0 })$.
$$
{\rm \tg}\alpha =\frac { dz({ x }_{ 0 },{ y }_{ 0 }) }{ dx } ={ f }_{ x }^{ \prime }({ M }_{ 0 })
$$

4

[свернуть]

Использованная литература

Частные производные высших порядков

Тест на понимание темы «Частные производные высших порядков»

Таблица лучших: Частные производные высших порядков

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Дифференцируемость композиции дифференцируемых функций

В данной статье, используя термин «сложная функция», мы будем понимать композицию нескольких функций.

Теорема

Пусть функции { \varphi }_{ i }(x)={ \varphi }_{ i }({ x }_{ 1 },{ x }_{ 1 },{ x }_{ 1 },...,{ x }_{ n })\quad i=\overline { 1,m } дифференцируемы в точке { x }^{ \circ }=({ x }_{ 1 }^{ \circ },{ x }_{ 2 }^{ \circ },...,{ x }_{ n }^{ \circ }) . Пусть функция f({ y }_{ 1 },{ y }_{ 2 },{ y }_{ 3 },...{ ,y }_{ m }) дифференцируема в точке { y }^{ \circ }=({ \varphi }_{ 1 }({ x }^{ \circ }),{ \varphi }_{ 2 }({ x }^{ \circ }),...,{ \varphi }_{ m }({ x }^{ \circ })).

Тогда сложная функция T(x)=f({ \varphi }_{ 1 }(x),{ \varphi }_{ 2 }(x),...,{ \varphi }_{ m }(x)) дифференцируема в точке { x }^{ \circ } , причем при { x\rightarrow x }^{ \circ }
$$
T(x)-T({ x }^{ \circ })=\sum _{ i=1 }^{ n }{ { A }_{ i }({ x }_{ i }-{ x }_{ i }^{ \circ })+o(p(x,{ x }^{ \circ }))} 
$$
$$
{A }_{ i }=\frac { \partial T }{ \partial { x }_{ i } } ({ x }^{ \circ  })=\sum _{ j=1 }^{ m }{ \frac { \partial f }{ \partial { y }_{ j } }  } ({ y }^{ \circ  })\frac { \partial { \varphi  }_{ i } }{ \partial { x }_{ i } } ({ x }^{ \circ  }),\quad i=\overline { 1,n } \quad \quad \quad \quad (1)
$$

Спойлер

Функция f(y) дифференцируема в точке { y }^{ \circ }, а значит, по теореме о существовании частных производных найдутся функции { { f }_{ j }( }y), j=\overline { 1,m } непрерывные в точке { y }^{ \circ } и такие, что $$f(y)-f({ y }^{ \circ  })=\sum _{ j=1 }^{ m }{ { f }_{ j }(y)({ y }_{ j }-{ y }_{ j }^{ \circ  }), } \quad \quad { f }_{ j }({ y }^{ \circ  })=\frac { \partial f }{ \partial { y }_{ j } } ({ y }^{ \circ  }) \quad \quad\quad \quad(2)$$Раз функция дифференцируема в точке, то она непрерывна в этой точке. Используя это и теорему о непрерывности сложной функции, получим что функции: $${ \psi  }_{ j }(x)={ f }_{ j }({ \varphi  }_{ 1 }(x),{ \varphi  }_{ 2 }(x),…{ \varphi  }_{ m }(x)),\quad \quad j=\overline { 1,m }\quad \quad\quad \quad(3) $$

непрерывны в точке { x }^{ \circ } (т.к функции {\varphi}_{ i }(x) непрерывны, и по теореме указанной выше, их композиция также даст непрерывную функцию) , при этом
$$
{ \psi  }_{ j }({ x }^{ \circ  })={ f }_{ j }({ y }^{ \circ  })=\frac { \partial f }{ \partial { y }_{ j } } ({ y }^{ \circ  })\quad \quad\quad \quad(4)
$$

Подставив в (2) { y }_{ 1 }={ \varphi }_{ 1 }(x),...,{ y }_{ m }={ \varphi }_{ m }(x) и воспользовавшись (3) получим:

$$T(x)-T({ x }^{ \circ  })=\sum _{ j=1 }^{ m }{ { \psi  }_{ j }(x)({ \varphi  }_{ j }(x)- } ({ \varphi  }_{ j }({ x }^{ \circ  }))\quad \quad\quad \quad(5)$$

Но функции { \varphi }_{ j }(x) дифференцируемы в точке { x }^{ \circ } (по условию), поэтому найдутся такие непрерывные в точке { x }^{ \circ } функции { \varphi }_{ ij }(x),  что $${ \varphi  }_{ j }(x)-{ \varphi  }_{ j }({ x }^{ \circ  })=\sum _{ i=1 }^{ n }{ { \varphi  }_{ ij }(x) } ({ x }_{ i }-{ x }_{ i }^{ \circ  }),\quad \quad { \varphi  }_{ ij }({ x }^{ \circ  })=\frac { \partial { \varphi  }_{ j } }{ \partial { x }_{ i } } ({ x }^{ \circ  })\quad \quad\quad \quad(6)$$

$${ i=\overline { 1,n }  }\quad { j=\overline { 1,m }  }$$

Подставляя выражения (6) и (5) получаем

$$T(x)-T({ x }^{ \circ  })=\sum _{ i=1 }^{ n }{ { T }_{ i }(x)({ x }_{ i }-{ x }_{ i }^{ \circ  }) } \quad \quad { T }_{ i }(x)=\sum _{ j=1 }^{ m }{ { \varphi  }_{ ij } } (x){ \psi  }_{ j }(x)\quad \quad\quad \quad(7)$$

Так как функции { \psi }_{ j }(x) и { \varphi }_{ ij }(x) непрерывны в точке  { x }^{ \circ }, то и { T }_{ i }(x) непрерывны в этой точке (как композиции непрерывных). А это означает, что сложная функция  { T }(x) дифференцируема в  { x }^{ \circ }.

Дифференцируемая функция { T }(x) может быть записан в виде (1) с коэффициентами { A }_{ i }, равными в силу (6) и (4)

$${ A }_{ i }={ T }_{ i }({ x }^{ \circ  })=\sum _{ j=1 }^{ m }{ { \varphi  }_{ ij } } ({ x }^{ \circ  }){ \psi  }_{ j }({ x }^{ \circ  })=\sum _{ j=1 }^{ m }{ \frac { \partial f }{ d{ y }_{ j } } ({ y }^{ \circ  })\frac { \partial { \varphi  }_{ j } }{ d{ x }_{ i } } ({ x }^{ \circ  })=\frac { \partial T }{ \partial { x }_{ i } }  } ({ x }^{ \circ  })$$

[свернуть]
Спойлер

  •  Формула ${ A }_{ i }=\frac { \partial T }{ \partial { x }_{ i } } ({ x }^{ \circ })=\sum\limits _{ j=1 }\limits^{ m }{ \frac { \partial f }{ \partial { y }_{ j } }  } ({ y }^{ \circ })\frac { \partial { \varphi }_{ i } }{ \partial { x }_{ i } } ({ x }^{ \circ }),\quad i=\overline { 1,n }$  дает правило нахождения частных производных сложной функции, аналогичное соответствующему правилу для функций одной переменной.

[свернуть]
Спойлер

Пусть дана функция $f(x,y)=\sin x + \tan (x^ 2+y^ 2)$.
Ее можно представить как композицию функций: $z(u,v)=u+v\quad u(x,y)=\sin x \quad v(x,y)=\tan (x^ 2+y^ 2)$
Тогда дифференциал функции $f$ имеет вид:
$$
df=\frac { dz }{ dx } +\frac { dz }{ dy } =\frac { dz }{ du } \frac { du }{ dx } +\frac { dz }{ dv } \frac { dv }{ dx } +\frac { dz }{ du } \frac { du }{ dy } +\frac { dz }{ dv } \frac { dv }{ dy }
$$
Вычислим частные производные:
$$
\frac { dz }{ du } =1; \quad \frac { du }{ dx } =-\cos x;
$$
$$
\frac { dz }{ dv } =1; \quad \frac { dv }{ dx } =\frac { 2x }{ \cos ^{ 2 }{ ({ x }^{ 2 }+{ y }^{ 2 }) } } ;
$$
$$
\frac { du }{ dy } = 0; \quad \frac { dv }{ dy } =\frac { 2y }{ \cos ^{ 2 }{ ({ x }^{ 2 } } +y };
$$
Получаем, что:
$$
df=-\cos x +\frac { 2x }{ \cos ^{ 2 }{ ({ x }^{ 2 }+{ y }^{ 2 }) } } +\frac { 2y }{ \cos ^{ 2 }{ ({ x }^{ 2 } } + y^{ 2 }) }.
$$

[свернуть]

 

Дифференцируемость композиции дифференцируемых функций

Тест, на понимание темы «Дифференцируемость композиции дифференцируемых функций»

Таблица лучших: Дифференцируемость композиции дифференцируемых функций

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Теорема о смешанных производных

Теорема 1(для функции двух переменных)

Пусть функция $f(x,y)$ определенна со своими частными производными ${ f }_{ x },{ f }_{ y },{ f }_{ xy },{ f }_{ yx }$ в некоторой окрестности точки $({ x }_{ 0 },{ y }_{ 0 })$, и при этом ${ f }_{ xy }$ и  ${ f }_{ yx }$ непрерывны в этой точке. Тогда  эти производные равны ( результат не зависит от порядка дифференцирования). $${ f }_{ xy }({ x }_{ 0 },{ y }_{ 0 })={ f }_{ yx }({ x }_{ 0 },{ y }_{ 0 }) \quad \quad (1)$$
Спойлер

Пусть $f(x,y)$ определенна со своими частными производными ${ f }_{ x },\;{ f }_{ y },\;{ f }_{ xy },\;{ f }_{ yx }$ в некоторой $\delta-$окрестности точки $({ x }_{ 0 },{ y }_{ 0 })$ и пусть $\Delta x$ и $\Delta y$ зафиксированы так, что образуют шар с радиусом $\delta$ $(\Delta { x }^{ 2 }+\Delta { y }^{ 2 }<{ \delta }^{ 2 })$. (Под $\Delta x $ будем понимать приращение функции  $f$ по аргументу $x$. Аналогично определим $\Delta y$)
Положим:
$$
{ \Delta  }_{ xy }f={ \Delta  }_{ x }({ \Delta  }_{ y }f),  { \Delta  }_{ yx }f={ \Delta  }_{ y }({ \Delta  }_{ x }f)
$$
и докажем, что
$$
{ \Delta }_{ xy }f={ \Delta }_{ yx }f\quad (2)
$$
Действительно,
$$
{ \Delta }_{ xy }f={ \Delta }_{ x }({ \Delta }_{ y }f)={ \Delta }_{ x }[f({ x }_{ 0 },{ y }_{ 0 }+{ \Delta }y)-f({ x }_{ 0 },{ y }_{ 0 })]=[f({ x }_{ 0 }+{ \Delta }x,{ y }_{ 0 }+{ \Delta }y)-f({ x }_{ 0 }+{ \Delta }x,{ y }_{ 0 })]-[f({ x }_{ 0 }+{ \Delta }x,{ y }_{ 0 }+{ \Delta }y)-f({ x }_{ 0 }+{ \Delta }x,{ y }_{ 0 })]\quad (3)
$$
(т.е ${ \Delta }_{ xy }f$ это приращение функции $f$ сперва по $y$ а затем по $x$)
Аналогично
$$
{ \Delta  }_{ yx }f={ \Delta  }_{ y }({ \Delta  }_{ x }f)=[f({ x }_{ 0 }+{ \Delta  }x,{ y }_{ 0 }+{ \Delta  }y)-f({ x }_{ 0 },{ y }_{ 0 }+{ \Delta  }y)]-[f({ x }_{ 0 }+{ \Delta  }x,{ y }_{ 0 })-f({ x }_{ 0 },{ y }_{ 0 })]\quad (4)
$$
Сравнивая $(3)$ и $(4)$, убедимся в справедливости $(2)$.
Положим приращение функции $f$ по переменной $y$ как функцию одной переменной по $x$. Пусть $\varphi (x)=f(x,{ y }_{ 0 }+\Delta y)-f(x,{ y }_{ 0 })$. Тогда ${ \Delta }_{ xy }f$ можно записать в виде:
$$
{ \Delta }_{ xy }f=\varphi ({ x }_{ 0 }+\Delta x)-\varphi ({ x }_{ 0 })
$$
Так как , по условию существует производная ${ f }_{ x }$  то функция $\varphi (x)$ дифференцируема на отрезке $[{ x }_{ 0 },{ x }_{ 0 }+{ \Delta }x]$
Воспользуемся теоремой Лагранжа о конечных приращениях, получим:
$$
{ \Delta  }_{ xy }f=\varphi ({ x }_{ 0 }+\Delta x)-\varphi ({ x }_{ 0 })={ \varphi  }^{ \prime  }({ x }_{ 0 }+{ \theta  }_{ 1 }\Delta x)\Delta x,\quad 0<{ \theta  }_{ 1 }<1 $$
А поскольку $\varphi (x)$ функция по переменной $x$, то ее производная будет: $${ \varphi  }^{ \prime  }(x)={ f }_{ x }(x,{ y }_{ 0 }+\Delta y)-{ f }_{ x }(x,{ y }_{ 0 })$$
тогда мы можем записать ${ \Delta}_{ xy }f$ как
$$
{ \Delta }_{ xy }f=[{ f }_{ x }({ x }_{ 0 }+{ \theta  }_{ 1 }\Delta x,{ y }_{ 0 }+\Delta y)-{ f }_{ x }({ x }_{ 0 }+{ \theta  }_{ 1 }\Delta x,{ y }_{ 0 })]\Delta x
$$
Применим опять формулу конечных приращений Лагранжа, но теперь по переменной $y$, получим:
$$
{ \Delta  }_{ xy }f={ f }_{ xy }({ x }_{ 0 }+{ \theta  }_{ 1 }\Delta x,\quad { y }_{ 0 }+{ \theta  }_{ 2 }\Delta y)\Delta x\Delta y,\quad 0<{ \theta  }_{ 1 },{ \theta  }_{ 2 }<1
$$
Сделаем абсолютно аналогичные действия, но уже начнем с переменно $x$. Т.е, положим приращение $f$ по переменной $x$ в функцию одной переменной по $y$
$$
\psi (y)=f({ x }_{ 0 }+\Delta x,y)-f({ x }_{ 0 },y)
$$
Также выразим ${ \Delta }_{ yx }f$ через $\psi (y)$, затем применим дважды формулу конечных приращений Лагранжа ( сначала по y, затем по x ).  В итоге получим:
$$
{ \Delta  }_{ yx }f={ f }_{ yx }({ x }_{ 0 }+{ \theta  }_{ 4 }\Delta x,\quad { y }_{ 0 }+{ \theta  }_{ 3 }\Delta y)\Delta x\Delta y,\quad 0<{ \theta  }_{ 3 },{ \theta  }_{ 4 }<1
$$
Согласно равенству (2) правые части равенств равны. Приравняем их и сократим на $\Delta x\Delta y$ (т.к. $\Delta x\neq 0$ и $\Delta y\neq 0$), получим
$$
{ f }_{ xy }({ x }_{ 0 }+{ \theta  }_{ 1 }\Delta x,\quad { y }_{ 0 }+{ \theta  }_{ 2 }\Delta y){ =f }_{ yx }({ x }_{ 0 }+{ \theta  }_{ 4 }\Delta x,\quad { y }_{ 0 }+{ \theta  }_{ 3 }\Delta y),\quad { 0<\theta  }_{ 1 }{ ,\theta  }_{ 2 },{ \theta  }_{ 3 },{ \theta  }_{ 4 }<1
$$
Так как частные производные ${ f }_{ xy }$ и ${ f }_{ yx }$ непрерывны в точке $({ x }_{ 0 },{ y }_{ 0 })$, перейдем к пределу. Так как ${ \theta }_{ i }$-бесконечно малая то в итоге получим:
$$
{ f }_{ xy }({ x }_{ 0 },{ y }_{ 0 }){ =f }_{ yx }({ x }_{ 0 },{ y }_{ 0 }),
$$
что и требовалось доказать.

[свернуть]
Спойлер

Найти смешанные производные второго порядка функции ${ z={ x }^{ 4 } }-2{ x }^{ 2 }y^{ 3 }+{ y }^{ 5 }+1$

${ { z }_{ x }^{ \prime }={ 4x }^{ 3 } }-4{ x }y^{ 3 }$

${ { z }_{ y }^{ \prime }= }5{ y }^{ 4 }-6{ x }^{ 2 }y^{ 2 }$

${ { z }_{ yx }^{ \prime }= }-12{ x }y^{ 2 } \quad \quad \quad { { z }_{ xy }^{ \prime }= }-12{ x }y^{ 2 }\quad \quad { \Rightarrow \quad }{ z }_{ yx }^{ \prime }={ z }_{ xy }^{ \prime }$

[свернуть]
Спойлер

(пример Шварца):
 
$f(x,y)=\begin{cases} xy\frac { { x }^{ 2 }-{ y }^{ 2 } }{ { x }^{ 2 }+y^{ 2 } } \quad \quad { x }^{ 2 }+y^{ 2 }>0 \\ 0\quad \quad \quad \quad \quad x=y=0 \end{cases}$

${ f }_{ xy }(0,0)=-1\quad \quad \quad \quad{ f }_{ yx }(0,0)=1$

[свернуть]

Теперь сформулируем общую теорему. Ее можно несложно доказать с помощью индукции.

Теорема 2(обобщение)

Если у функции $n$ переменных смешанные частные производные $m$-го порядка непрерывны в некоторой точке, а производные низших порядков непрерывны в окрестности этой точки, то частные производные порядка $m$  не зависят от порядка дифференцирования.
Спойлер
Данная теорема справедлива ввиду того, что любые две последовательности дифференцирования, такие, что по каждому фиксированному аргументу они содержат одно и то же суммарное число дифференцирований, можно свести один к другому за конечное число шагов. При этом, в каждом шаге будет меняться порядок дифференцирования лишь по двум переменным, а другие останутся фиксированными. Т.е. каждый раз мы будем рассматривать изменение порядка дифференцирования лишь для двух переменных — а значит будет выполняться Теорема 1.

Пример

Докажем что ${ f }_{ xyz }={ f }_{ zxy }$
Последовательно меняем порядок дифференцирования, применяя Теорему 1:
${ f }_{ xyz }={ ({ f }_{ x }) }_{ yz }={ ({ f }_{ x }) }_{ zy }={ ({ f }_{ xz }) }_{ y }={ ({ f }_{ zx }) }_{ y }={ { f }_{ zxy }
}$

[свернуть]

Спойлер

На первый взгляд, кажется что теорема практически бесполезна. Якобы, что для того, чтобы установить равенство смешанных производных — надо утверждать их непрерывность, а для этого их требуется найти. А найдя смешанные производные, не составляет труда и так проверить их на равенство. Однако, о непрерывности функции можно иногда судить на основании некоторых общих теорем, не прибегая к конкретному вычислению. Например, мы знаем, что все элементарные функции многих переменных непрерывны в своей области определения. С другой стороны, частные производные элементарных функций сами являются элементарными, поэтому,если частная производная некоторой элементарной функции определена на некоторой окрестности какой-либо точки, то эта производная и непрерывна в каждой точке данной окрестности.

[свернуть]

Теорема о смешанных производных

Тест, на понимание темы «Теорема о смешанных производных»

Таблица лучших: Теорема о смешанных производных

максимум из 4 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

M1568. Сечение пирамиды

Задача из журнала «Квант» (1996, №5, M1568)

Условие

Докажите что при n\ge 5 сечение пирамиды, в основании которой лежит правильный n-угольник, не может являться правильным (n+1)-угольником.

Решение

Пусть правильный (n+1) –угольник { B }_{ 1 }...{ B }_{ n } является сечением пирамиды S{ A }_{ 1 }...{ A }_{ n } где { A }_{ 1 }...{ A }_{ n } – правильный n-угольник. Мы рассмотрим три случая: n=5 , n=2k-1 (k>3)  и n=2k (k>2)
Так как n-угольная пирамида имеет (n+1) грань, то стороны сечения находятся по одной в каждой грани пирамиды. Поэтому без ограничения общности рассуждений можно считать, что точки { B }_{ 1 }...{ B }_{ n+1 } расположены на ребрах пирамиды так, как показано на рисунках 1 и 2 ( в соответствии с указанными случаями).

  1.  n=5 . Так как в правильном шестиугольнике { B }_{ 1 }...{ B }_{ 6 } прямые { B }_{ 2 }{ B }_{ 3 }, { B }_{ 5 }{ B }_{ 6 } и { B }_{ 1 }{ B }_{ 4 } параллельны, а плоскости  { A }_{ 2 }S{ A }_{ 3 } и ASA проходят через { B }_{ 2 }{ B }_{ 3 } и { B }_{ 5 }{ B }_{ 6 }  то их линия пересечения { ST ( T= { A }_{ 1 }{ A }_{ 5 } }\bigcap { A } _{ 2 }{ A }_{ 3 } ) параллельна этим прямым т.е. ST\parallel { B }_{ 1 }{ B }_{ 4 } Проведем через прямые ST  и { B }_{ 1 }{ B }_{ 4 } плоскость. Эта плоскость пересечет плоскость основания пирамиды по прямой { B }_{ 1 }{ A }_{ 4 } которая должна проходить через точку пересечения прямой ST с плоскостью основания т.е. через точку T. Итак, прямые { A }_{ 1 }{ A }_{ 5 }, { A }_{ 4 }{ B }_{ 1 } и { A }_{ 2 }{ A }_{ 3 } пересекаются в одной точке.Аналогично доказывается, что прямые { A }_{ 1 }{ A }_{ 2 }, { A }_{ 3 }{ B }_{ 6 } и { A }_{ 4 }{ A }_{ 5 }  и пересекаются в одной точке. Из этого следует что { A }_{ 4 }{ B }_{ 1 } и { A }_{ 3 }{ B }_{ 6 }  – оси симметрии правильного пятиугольника { A }_{ 1 }...{ A }_{ 5 } , значит. Точка O их пересечения – центр этого пятиугольника. Заметим теперь, что если Q – центр правильного шестиугольника { B }_{ 1 }...{ B }_{ 6 } , то плоскости  S{ A }_{ 3 }{ B }_{ 6 }, S{ A }_{ 4 }{ B }_{ 1 } и S{ B }_{ 2 }{ B }_{ 5 } пересекаются по прямой SQ. Следовательно прямые  { A }_{ 3 }{ B }_{ 6 },{ A }_{ 4 }{ B }_{ 1 } и { A }_{ 2 }{ A }_{ 5 }  должны пересекаться в одной точке – точке пересечения прямой SQ с плоскостью основания пирамиды.Значит диагональ правильного пятиугольника { A }_{ 1 }...{ A }_{ 5 } должна проходить через его центр O, что невозможно.
  2. 4

  3.   n=2k-1 (k>3) Аналогично первому случаю показывается, что так как в правильном 2k-угольнике  { B }_{ 1 }...{ B }_{ 2k } прямые   { B }_{ 1 }{ B }_{ 2 },{ B }_{ k+1 }{ B }_{ k+2 } и { B }_{ k }{ B }_{ k+3 }параллельны, то  прямые   { A }_{ 1 }{ A }_{ 2 },{ A }_{ k+1 }{ A }_{ k+2 } и { A }_{ k }{ A }_{ k+3 } должны пересекаться в одной точке, что невозможно, так как в правильном (2k-1)-угольнике { A }_{ 1 }...{ A }_{ 2k-1 } имеем { A }_{ k+1 }{ A }_{ k+2 }\parallel { A }_{ k }{ A }_{ k+3 }, а прямые { A }_{ 1 }{ A }_{ 2 },{ A }_{ k+1 }{ A }_{ k+2 } не параллельны.
  4.  n=2k (k>2) Аналогично предыдущему случаю прямые  { A }_{ 1 }{ A }_{ 2 },{ A }_{ k+1 }{ A }_{ k+2 } и { A }_{ k }{ A }_{ k+3 }  параллельны, следовательно, прямые  { B }_{ 1 }{ B }_{ 2 },{ B }_{ k+1 }{ B }_{ k+2 } и { B }_{ k }{ B }_{ k+3 } должны пересекаться в одной точке, что невозможно, так как { B }_{ k+1 }{ B }_{ k+2 }\parallel { B }_{ k }{ B }_{ k+3 }, а прямые { A }_{ 1 }{ A }_{ 2 }, { A }_{ k+1 }{ A }_{ k+2 }  не параллельны.

Замечания

  1.  При n=3,4 утверждение задачи неверно. Примерами могут служить правильный тетраэдр имеющий сечением квадрат и правильная четырехугольная  пирамида, все боковые грани которой являются правильными треугольниками, которая имеет сечением правильный пятиугольник
  2. Приведенное решение можно было бы изложить короче, если воспользоваться центральным проектированием и его свойством утверждающим, что при центральном проектировании образами прямых, проходящих через одну точку, являются прямые, проходящие через одну точку ( или параллельные). Достаточно спроектировать сечение пирамиды на плоскость из вершины пирамиды.

Д. Терешин.