Как известно, для любого линейного оператора можно определить матрицу этого оператора, при чем такая матрица будет единственной для заданной пары базисов (или одного базиса, в случае оператора из $\Omega \left(X\right)$, где $\left(X,\:P\right)$ — линейное пространство). Тогда, действия над линейным операторами можно свести к операциям над их матрицами, заданными в фиксированных базисах.
Лемма. В фиксированных базисах, матрицей суммы операторов будет сумма матриц этих операторов.
Зададим два линейных пространства над одним и тем же полем $\left(X,\:P\right)$ и $\left(Y,\:P\right)$ и укажем их размерности, $\dim{X} = m$, $\dim{Y} = n$. В пространстве $X$ зададим базис $\left \langle e \right \rangle = \left \langle e_{1},\: e_{2},\: \cdots,\: e_{m}\right \rangle,$ а в пространстве $Y$ — $\left \langle g \right \rangle = \left \langle g_{1},\: g_{2},\: \cdots,\: g_{n}\right \rangle.$
Зададим линейный оператор $A\in\Omega \left(X,\:Y\right)$. Для оператора $A$ можем записать систему:$$\left\{\begin{matrix} Ae_{1}& = & a_{11}g_{1} & + & a_{21}g_{2} & + & \cdots & + & a_{n1}g_{n},\\ Ae_{2}& = & a_{12}g_{2} & + & a_{22}g_{2} & + & \cdots & + & a_{n2}g_{n},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Ae_{m}& = & a_{1m}g_{1} & + & a_{2m}g_{2} & + & \cdots & + & a_{nm}g_{n}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Ae_{j} =\sum_{i=1}^{n}a_{ij}g_{i},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle g \right \rangle$ матрица оператора $A$ будет иметь вид: $$A_{ge} = \left(\begin{matrix}a_{11} & a_{12} & \cdots & a_{1m}\\a_{21} & a_{22} & \cdots & a_{2m}\\ \cdot& \cdot& \cdot& \cdot\\ a_{n1} & a_{n2} & \cdots & a_{nm}\end{matrix}\right).$$
Аналогично, зададим линейный оператор $B\in\Omega \left(X,\: Y\right)$. Для него можем записать систему:$$\left\{\begin{matrix} Be_{1}& = & b_{11}g_{1} & + & b_{21}g_{2} & + & \cdots & + & b_{n1}g_{n},\\ Be_{2}& = & b_{12}g_{2} & + & b_{22}g_{2} & + & \cdots & + & b_{n2}g_{n},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Be_{m}& = & b_{1m}g_{1} & + & b_{2m}g_{2} & + & \cdots & + & b_{nm}g_{n}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Be_{j} =\sum_{i=1}^{n}b_{ij}g_{i},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle g \right \rangle$ матрица оператора $B$ будет иметь вид: $$B_{ge} = \left(\begin{matrix}b_{11} & b_{12} & \cdots & b_{1m}\\b_{21} & b_{22} & \cdots & b_{2m}\\ \cdot& \cdot& \cdot& \cdot\\ b_{n1} & b_{n2} & \cdots & b_{nm}\end{matrix}\right).$$
Определим линейный оператор $C = A + B,\:$ где $C\in\Omega \left(X,\: Y\right).$ Для оператора $C$ можем записать систему:$$\left\{\begin{matrix} Ce_{1}& = & c_{11}g_{1} & + & c_{21}g_{2} & + & \cdots & + & c_{n1}g_{n},\\ Ce_{2}& = & c_{12}g_{2} & + & c_{22}g_{2} & + & \cdots & + & c_{n2}g_{n},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Ce_{m}& = & c_{1m}g_{1} & + & c_{2m}g_{2} & + & \cdots & + & c_{nm}g_{n}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Ce_{j} =\sum_{i=1}^{n}c_{ij}g_{i},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle g \right \rangle$ матрица оператора $C$ будет иметь вид: $$C_{ge} = \left(\begin{matrix}c_{11} & c_{12} & \cdots & c_{1m}\\c_{21} & c_{22} & \cdots & c_{2m}\\ \cdot& \cdot& \cdot& \cdot\\ c_{n1} & c_{n2} & \cdots & c_{nm}\end{matrix}\right).$$
Рассмотрим подробнее равенство. $$\sum_{i=1}^{n}c_{ij}g_{i} = Ce_{j} =$$ (по определению оператора суммы) $$= \left(A + B\right)e_{j} = Ae_{j} + Be_{j} =$$ (используя равенства для $Ae_{j}$ и для $Be_{j}$)$$=\sum_{i=1}^{n}a_{ij}g_{i} + \sum_{i=1}^{n}b_{ij}g_{i} = \sum_{i=1}^{n}\left(a_{ij}+b_{ij}\right)g_{i}.$$Следовательно, $$\sum_{i=1}^{n}c_{ij}g_{i} = \sum_{i=1}^{n}\left(a_{ij}+b_{ij}\right)g_{i}.$$
Таким образом, каждый элемент матрицы $C_{ge}$ представляет собой сумму соответствующих элементов матриц $A_{ge}$ и $B_{ge}$, что и означает, что $C_{ge} = A_{ge} + B_{ge}.$
Лемма. В фиксированных базисах, матрицей произведения оператора на число будет матрица этого оператора, умноженная на это число.
Зададим два линейных пространства над одним и тем же полем $\left(X,\:P\right)$ и $\left(Y,\:P\right)$ и укажем их размерности, $\dim{X} = m$, $\dim{Y} = n$. В пространстве $X$ зададим базис $\left \langle e \right \rangle = \left \langle e_{1},\: e_{2},\: \cdots,\: e_{m}\right \rangle,$ а в пространстве $Y$ — $\left \langle g \right \rangle = \left \langle g_{1},\: g_{2},\: \cdots,\: g_{n}\right \rangle.$
Зададим линейный оператор $A\in\Omega \left(X,\: Y\right)$. Для оператора $A$ можем записать систему:$$\left\{\begin{matrix} Ae_{1}& = & a_{11}g_{1} & + & a_{21}g_{2} & + & \cdots & + & a_{n1}g_{n},\\ Ae_{2}& = & a_{12}g_{2} & + & a_{22}g_{2} & + & \cdots & + & a_{n2}g_{n},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Ae_{m}& = & a_{1m}g_{1} & + & a_{2m}g_{2} & + & \cdots & + & a_{nm}g_{n}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Ae_{j} =\sum_{i=1}^{n}a_{ij}g_{i},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle g \right \rangle$ матрица оператора $A$ будет иметь вид: $$A_{ge} = \left(\begin{matrix}a_{11} & a_{12} & \cdots & a_{1m}\\a_{21} & a_{22} & \cdots & a_{2m}\\ \cdot& \cdot& \cdot& \cdot\\ a_{n1} & a_{n2} & \cdots & a_{nm}\end{matrix}\right).$$
Определим линейный оператор $ C = \lambda A,$ где $C\in\Omega \left(X,\:Y\right)$, $\:\forall \lambda \in P$. Для оператора $C$ можем записать систему:$$\left\{\begin{matrix} Ce_{1}& = & c_{11}g_{1} & + & c_{21}g_{2} & + & \cdots & + & c_{n1}g_{n},\\ Ce_{2}& = & c_{12}g_{2} & + & c_{22}g_{2} & + & \cdots & + & c_{n2}g_{n},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Ce_{m}& = & c_{1m}g_{1} & + & c_{2m}g_{2} & + & \cdots & + & c_{nm}g_{n}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Ce_{j} =\sum_{i=1}^{n}c_{ij}g_{i},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle g \right \rangle$ матрица оператора $C$ будет иметь вид: $$C_{ge} = \left(\begin{matrix}c_{11} & c_{12} & \cdots & c_{1m}\\c_{21} & c_{22} & \cdots & c_{2m}\\ \cdot& \cdot& \cdot& \cdot \\ c_{n1} & c_{n2} & \cdots & c_{nm}\end{matrix}\right).$$
Рассмотрим подробнее равенство. $$\sum_{i=1}^{n}c_{ij}g_{i} = Ce_{j} =$$ (по определению произведения оператора на число) $$= \left(\lambda A\right)e_{j} = \lambda \left(Ae_{j}\right)=$$ (используя равенство для $Ae_{j}$)$$=\lambda\sum_{i=1}^{n}a_{ij}g_{i} = \sum_{i=1}^{n}\lambda a_{ij}g_{i}.$$Следовательно, $$\sum_{i=1}^{n}c_{ij}g_{i} = \sum_{i=1}^{n}\lambda a_{ij}g_{i}.$$
Таким образом, каждый элемент матрицы $C_{ge}$ представляет собой произведение числа $\lambda$ на соответствующий элемент матрицы $A_{ge}$, что и означает, что $C_{ge} = \lambda A_{ge}.$
Лемма. В фиксированных базисах, матрицей произведения операторов будет произведение матриц этих операторов.
Зададим три линейных пространства над одним и тем же полем $\left(X,\:P\right)$, $\left(Y,\:P\right)$ и $\left(Z,\:P\right)$ и укажем их размерности, $\dim{X} = m,$ $\dim{Y} = n,$ $\dim{Z} = k$. В пространстве $X$ зададим базис $\left \langle e \right \rangle = \left \langle e_{1},\: e_{2},\: \cdots,\: e_{m}\right \rangle,$ в пространстве $Y$ — $\left \langle g \right \rangle = \left \langle g_{1},\: g_{2},\: \cdots,\: g_{n}\right \rangle,$ а в пространстве $Z$ — $\left \langle t \right \rangle = \left \langle t_{1},\: t_{2},\: \cdots,\: t_{k}\right \rangle.$
Зададим линейный оператор $A\in\Omega \left(X,\: Y\right)$. Для оператора $A$ можем записать систему:$$\left\{\begin{matrix} Ae_{1}& = & a_{11}g_{1} & + & a_{21}g_{2} & + & \cdots & + & a_{n1}g_{n},\\ Ae_{2}& = & a_{12}g_{2} & + & a_{22}g_{2} & + & \cdots & + & a_{n2}g_{n},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Ae_{m}& = & a_{1m}g_{1} & + & a_{2m}g_{2} & + & \cdots & + & a_{nm}g_{n}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Ae_{j} =\sum_{i=1}^{n}a_{ij}g_{i},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle g \right \rangle$ матрица оператора $A$ будет иметь вид: $$A_{ge} = \left(\begin{matrix}a_{11} & a_{12} & \cdots & a_{1m}\\a_{21} & a_{22} & \cdots & a_{2m}\\ \cdot& \cdot& \cdot& \cdot\\ a_{n1} & a_{n2} & \cdots & a_{nm}\end{matrix}\right).$$
Аналогично, зададим линейный оператор $B\in\Omega \left(Y,\:Z\right)$. Для него можем записать систему:$$\left\{\begin{matrix} Bg_{1}& = & b_{11}t_{1} & + & b_{21}t_{2} & + & \cdots & + & b_{k1}t_{k},\\ Bg_{2}& = & b_{12}t_{2} & + & b_{22}t_{2} & + & \cdots & + & b_{k2}t_{k},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Bg_{n}& = & b_{1n}t_{1} & + & b_{2n}t_{2} & + & \cdots & + & b_{kn}t_{k}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Bg_{i} =\sum_{f=1}^{k}b_{fi}t_{f},$$ где $i = \overline{1,\:n}$. Тогда, в базисах $\left \langle g \right \rangle$ и $\left \langle t \right \rangle$ матрица оператора $B$ будет иметь вид: $$B_{tg} = \left(\begin{matrix}b_{11} & b_{12} & \cdots & b_{1n}\\b_{21} & b_{22} & \cdots & b_{2n}\\ \cdot& \cdot& \cdot& \cdot\\ b_{k1} & b_{k2} & \cdots & b_{kn}\end{matrix}\right).$$
Определим линейный оператор $C = BA,$ где $C\in\Omega \left(X,\:Z\right)$. Для оператора $C$ можем записать систему:$$\left\{\begin{matrix} Ce_{1}& = & c_{11}t_{1} & + & c_{21}t_{2} & + & \cdots & + & c_{k1}t_{k},\\ Ce_{2}& = & c_{12}t_{2} & + & c_{22}t_{2} & + & \cdots & + & c_{k2}t_{k},\\ \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot& \cdot \\ Ce_{m}& = & c_{1m}t_{1} & + & c_{2m}t_{2} & + & \cdots & + & c_{km}t_{k}.\\ \end{matrix}\right.$$Или можем записать кратко, через сумму:$$Ce_{j} =\sum_{d=1}^{k}c_{dj}t_{d},$$ где $j = \overline{1,\:m}$. Тогда, в базисах $\left \langle e \right \rangle$ и $\left \langle t \right \rangle$ матрица оператора $C$ будет иметь вид: $$C_{te} = \left(\begin{matrix}c_{11} & c_{12} & \cdots & c_{1k}\\c_{21} & c_{22} & \cdots & c_{2k}\\ \cdot& \cdot& \cdot& \cdot\\ c_{k1} & c_{k2} & \cdots & c_{km}\end{matrix}\right).$$
Рассмотрим подробнее равенство. $$\sum_{d=1}^{k}c_{dj}t_{d} = Ce_{j} =$$ (по определению произведения операторов) $$= \left(BA\right)e_{j} = B\left(Ae_{j}\right) =$$ (используя равенство для $Ae_{j}$)$$= B\sum_{i=1}^{n}a_{ij}g_{i} = \sum_{i=1}^{n}a_{ij}Bg_{i} = \sum_{i=1}^{n}a_{ij}\left(Bg_{i}\right) =$$ (используя равенство для $Bg_{i}$)$$= \sum_{i=1}^{n} a_{ij} \sum_{f=1}^{k} b_{fi}t_{f} = \sum_{i=1}^{n} \sum_{f=1}^{k} a_{ij}b_{fi}t_{f} =\\=\sum_{f=1}^{k} \sum_{i=1}^{n} b_{fi}a_{ij}t_{f} = \sum_{f=1}^{k} \left(\sum_{i=1}^{n} b_{fi}a_{ij} \right)t_{f}.$$Следовательно, получили равенство: $$\sum_{d=1}^{k}c_{dj}t_{d} =\sum_{f=1}^{k} \left(\sum_{i=1}^{n} b_{fi}a_{ij} \right)t_{f},$$ а так как $d = \overline{1,\:k}$ и $f = \overline{1,\:k}$, то получаем следующее:$$c_{dj} = \sum_{i=1}^{n} b_{di}a_{ij}.$$
Таким образом, каждый элемент матрицы $C_{te}$, с индексами $d$ и $j$ равен сумме попарных произведений каждого элемента $d$-ой строки матрицы $B_{tg}$ на соответствующий элемент $j$-ого столбца матрицы $A_{ge}$. Это и означает, по определению произведения матриц, что $C_{te} = B_{tg}A_{ge}.$
Примеры решения задач
- Пусть заданы два линейных оператора $$A\left(x_{1},\:x_{2},\:x_{3} \right) = \left(x_{2}+x_{3},\:2x_{1}+x_{3},\:3x_{1}-x_{2}+x_{3}\right ),$$$$B\left(x_{1},\:x_{2},\:x_{3}\right ) = \left (2x_{1}-x_{2}-x_{3},\:x_{1}-2x_{2}+x_{3},\:x_{1}+x_{2}-2x_{3}\right )$$и базис$$\left \langle e \right \rangle = \left \langle \left(1,\:0,\:0\right),\:\left(0,\:1,\:0\right),\:\left(0,\:0,\:1\right)\right \rangle.$$Найти матрицу суммы операторов $C = A + B$ в базисе $\left \langle e \right \rangle.$
Решение
Найдем матрицу оператора $A$ в базисе $\left \langle e \right \rangle.$$$ A_{e} = \left(\begin{array}{rrr}0 & 1 & 1 \\2 & 0 & 1 \\3 & -1 & 1\end{array}\right)\cdot$$
Найдем матрицу оператора $B$ в базисе $\left \langle e \right \rangle.$$$B_{e} = \left(\begin{array}{rrr}2 & -1 & -1 \\1 & -2 & 1 \\1 & 1 & -2\end{array}\right)\cdot$$
Найдем матрицу оператора $C = A + B.$ По лемме матрица оператора $C$ в базисе $\left \langle e \right \rangle$ описывается равенством: $C_{e} = A_{e} + B_{e}$, тогда имеем:$$C_{e} = \left(\begin{array}{rrr}0 & 1 & 1 \\2 & 0 & 1 \\3 & -1 & 1\end{array}\right) + \left(\begin{array}{rrr}2 & -1 & -1 \\1 & -2 & 1 \\1 & 1 & -2\end{array}\right) = \left(\begin{array}{rrr}2 & 0 & 0 \\3 & -2 & 2 \\4 & 0 & -1\end{array}\right)\cdot$$
[свернуть] - Пусть задан оператор дифференцирования $D\in\Omega \left ( \mathbb{R}_{4}[x] \right )$. Найти матрицу оператора $F = \sqrt{2}D$ $\left( F\in\Omega \left ( \mathbb{R}_{4}[x] \right) \right)$ в базисе $\left \langle e \right \rangle = \left \langle 1,\:\displaystyle x,\:\displaystyle x^{2},\:\displaystyle x^{3},\:\displaystyle x^{4}\right \rangle.$
Решение
Найдем матрицу оператора $D$ в базисе $\left \langle e \right \rangle.$$$D_{e} = \left(\begin{matrix}0 & 1 & 0 & 0 & 0\\0 & 0 & 2 & 0 & 0\\0 & 0 & 0 & 3 & 0\\0 & 0 & 0 & 0 & 4\\0 & 0 & 0 & 0 & 0\end{matrix}\right)\cdot$$
Найдем матрицу оператора $F = \sqrt{2}D$. По лемме матрица оператора $F$ в базисе $\left \langle e \right \rangle$ описывается равенством: $F_{e} = \sqrt{2}D_{e}$, тогда имеем:$$F_{e} = \sqrt{2}\left(\begin{matrix}0 & 1 & 0 & 0 & 0\\0 & 0 & 2 & 0 & 0\\0 & 0 & 0 & 3 & 0\\0 & 0 & 0 & 0 & 4\\0 & 0 & 0 & 0 & 0\end{matrix}\right) = \left(\begin{matrix}0 & \sqrt{2} & 0 & 0 & 0\\0 & 0 & 2\sqrt{2} & 0 & 0\\0 & 0 & 0 & 3\sqrt{2} & 0\\0 & 0 & 0 & 0 & 4\sqrt{2}\\0 & 0 & 0 & 0 & 0\end{matrix}\right)\cdot$$
[свернуть] - Пусть заданы два линейных оператора $$A\left(x_{1},\:x_{2},\:x_{3} \right) = \left(x_{1}-x_{2}+x_{3},\:x_{3},\:x_{2}\right ),$$$$B\left(x_{1},\:x_{2},\:x_{3}\right ) = \left (2x_{1}+3x_{2},\:x_{1},\:x_{2}-x_{3}\right )$$и базис$$\left \langle e \right \rangle = \left \langle \left(1,\:0,\:1\right),\:\left(2,\:0,\:-1\right),\:\left(1,\:1,\:0\right)\right \rangle.$$Найти матрицу произведения операторов $C = BA$ в базисе $\left \langle e \right \rangle.$
Решение
Найдем матрицу оператора $A$ в базисе $\left \langle e \right \rangle.$$$ A_{e} = \left(\begin{array}{rrr}2 & 1 & 0 \\1 & -1 & 0 \\0 & 0 & 1\end{array}\right)\cdot$$
Найдем матрицу оператора $B$ в базисе $\left \langle e \right \rangle.$$$B_{e} = \left(\begin{array}{rrr}2 & 1 & 5 \\1 & 2 & 1 \\-1 & 1 & 1\end{array}\right)\cdot$$
Найдем матрицу оператора $C = BA.$ По лемме матрица оператора $C$ в базисе $\left \langle e \right \rangle$ описывается равенством: $C_{e} = B_{e}A_{e}$, тогда имеем:$$C_{e} = \left(\begin{array}{rrr}2 & 1 & 5 \\1 & 2 & 1 \\-1 & 1 & 1\end{array}\right)\left(\begin{array}{rrr}2 & 1 & 0 \\1 & -1 & 0 \\0 & 0 & 1\end{array}\right) = \left(\begin{array}{rrr}5 & 1 & 5 \\4 & -1 & 1 \\-1 & -2 & 1\end{array}\right)\cdot$$
[свернуть] - Пусть заданы два линейных оператора $$A\left(x_{1},\:x_{2},\:x_{3} \right) = \left(2x_{1}-x_{2},\:3x_{1}+x_{3},\:2x_{2}-2x_{3}\right ),$$$$B\left(x_{1},\:x_{2},\:x_{3}\right ) = \left (x_{1}+x_{3},\:x_{2}-x_{1},\:3x_{2}+x_{3}\right )$$и базис$$\left \langle e \right \rangle = \left \langle \left(1,\:0,\:0\right),\:\left(0,\:1,\:0\right),\:\left(0,\:0,\:1\right)\right \rangle.$$Найти матрицу оператора $C = 2BA + 3A$ в базисе $\left \langle e \right \rangle.$
Решение
Найдем матрицу оператора $A$ в базисе $\left \langle e \right \rangle.$$$ A_{e} = \left(\begin{array}{rrr}2 & -1 & 0 \\3 & 0 & 1 \\0 & 2 & -2\end{array}\right)\cdot$$
Найдем матрицу оператора $B$ в базисе $\left \langle e \right \rangle.$$$B_{e} = \left(\begin{array}{rrr}1 & 0 & 1 \\-1 & 1 & 0 \\0 & 3 & 1\end{array}\right)\cdot$$
Найдем матрицу оператора $D = BA.$ По лемме матрица оператора $D$ в базисе $\left \langle e \right \rangle$ описывается равенством: $D_{e} = B_{e}A_{e}$, тогда имеем:$$D_{e} = \left(\begin{array}{rrr}1 & 0 & 1 \\-1 & 1 & 0 \\0 & 3 & 1\end{array}\right)\left(\begin{array}{rrr}2 & -1 & 0 \\3 & 0 & 1 \\0 & 2 & -2\end{array}\right) = \left(\begin{array}{rrr}2 & 1 & -2 \\1 & 1 & 1 \\9 & 2 & 1\end{array}\right)\cdot$$
Найдем матрицу оператора $F = 2D.$ По лемме матрица оператора $F$ в базисе $\left \langle e \right \rangle$ описывается равенством: $F_{e} = 2D_{e}$, тогда имеем:$$F_{e} = 2\left(\begin{array}{rrr}2 & 1 & -2 \\1 & 1 & 1 \\9 & 2 & 1\end{array}\right) = \left(\begin{array}{rrr}4 & 2 & -4 \\2 & 2 & 2 \\18 & 4 & 2\end{array}\right)\cdot$$
Найдем матрицу оператора $G = 3A.$ По лемме матрица оператора $G$ в базисе $\left \langle e \right \rangle$ описывается равенством: $G_{e} = 3A_{e}$, тогда имеем:$$G_{e} = 3\left(\begin{array}{rrr}2 & -1 & 0 \\3 & 0 & 1 \\0 & 2 & -2\end{array}\right) = \left(\begin{array}{rrr}6 & -3 & 0 \\9 & 0 & 3 \\0 & 6 & -6\end{array}\right)\cdot$$
Тогда, по лемме матрица оператора $C$ определяется равенством: $C_{e} = F_{e} + G_{e},$ получим:$$C_{e} = \left(\begin{array}{rrr}4 & 2 & -4 \\2 & 2 & 2 \\18 & 4 & 2\end{array}\right) + \left(\begin{array}{rrr}6 & -3 & 0 \\9 & 0 & 3 \\0 & 6 & -6\end{array}\right) = \left(\begin{array}{rrr}10 & -1 & -4 \\11 & 2 & 5 \\18 & 10 & -4\end{array}\right)\cdot$$
[свернуть] - Пусть заданы три линейных оператора $$A\left(x_{1},\:x_{2},\:x_{3} \right) = \left(x_{1}+x_{2}+x_{3},\:2x_{1}-x_{2},\:3x_{2}+x_{3}\right ),$$$$B\left(x_{1},\:x_{2},\:x_{3}\right ) = \left (2x_{2}-3x_{3},\:x_{1}+x_{3},\:2x_{1}-3x_{2}\right ),$$$$C\left(x_{1},\:x_{2},\:x_{3} \right) = \left(x_{1},\:x_{2}-4x_{3},\:2x_{1}+6x_{3}\right )$$и базис$$\left \langle e \right \rangle = \left \langle \left(1,\:0,\:1\right),\:\left(1,\:1,\:0\right),\:\left(0,\:1,\:1\right)\right \rangle.$$Найти матрицу оператора $D = A^{2} — 5B + 6C$ в базисе $\left \langle e \right \rangle.$
Решение
Найдем матрицу оператора $A$ в базисе $\left \langle e \right \rangle.$$$ A_{e} = \left(\begin{array}{rrr}2 & 2 & 2 \\2 & 1 & -1 \\1 & 3 & 4\end{array}\right)\cdot$$
Найдем матрицу оператора $B$ в базисе $\left \langle e \right \rangle.$$$B_{e} = \left(\begin{array}{rrr}-3 & 2 & -1 \\2 & 1 & 1 \\2 & -1 & -3\end{array}\right)\cdot$$
Найдем матрицу оператора $C$ в базисе $\left \langle e \right \rangle.$$$C_{e} = \left(\begin{array}{rrr}1 & 1 & 0 \\-4 & 1 & -3 \\8 & 2 & 6\end{array}\right)\cdot$$
Найдем матрицу оператора $F = A^{2}.$ Матрица оператора $F$ в базисе $\left \langle e \right \rangle$ описывается равенством: $F_{e} = A_{e}A_{e}$, тогда имеем:$$F_{e} = \left(\begin{array}{rrr}2 & 2 & 2 \\2 & 1 & -1 \\1 & 3 & 4\end{array}\right)\left(\begin{array}{rrr}2 & 2 & 2 \\2 & 1 & -1 \\1 & 3 & 4\end{array}\right) = \left(\begin{array}{rrr}10 & 12 & 10 \\5 & 2 & -1 \\12 & 17 & 15\end{array}\right)\cdot$$
Найдем матрицу оператора $G = -5B.$ По лемме матрица оператора $G$ в базисе $\left \langle e \right \rangle$ описывается равенством: $G_{e} = -5B_{e}$, тогда имеем:$$G_{e} = -5\left(\begin{array}{rrr}-3 & 2 & -1 \\2 & 1 & 1 \\2 & -1 & -3\end{array}\right) = \left(\begin{array}{rrr}15 & -10 & 5 \\-10 & -5 & -5 \\-10 & 5 & 15\end{array}\right)\cdot$$
Найдем матрицу оператора $H = 6C.$ По лемме матрица оператора $H$ в базисе $\left \langle e \right \rangle$ описывается равенством: $H_{e} = 6C_{e}$, тогда имеем:$$H_{e} = 6\left(\begin{array}{rrr}1 & 1 & 0 \\-4 & 1 & -3 \\8 & 2 & 6\end{array}\right) = \left(\begin{array}{rrr}6 & 6 & 0 \\-24 & 6 & -18 \\48 & 12 & 36\end{array}\right)\cdot$$
Тогда, по лемме матрица оператора $D$ определяется равенством: $D_{e} = F_{e} + G_{e} + H_{e},$ получим:$$D_{e} = \left(\begin{array}{rrr}10 & 12 & 10 \\5 & 2 & -1 \\12 & 17 & 15\end{array}\right) + \left(\begin{array}{rrr}15 & -10 & 5 \\-10 & -5 & -5 \\-10 & 5 & 15\end{array}\right) + \left(\begin{array}{rrr}6 & 6 & 0 \\-24 & 6 & -18 \\48 & 12 & 36\end{array}\right)=$$$$=\displaystyle\left(\begin{array}{rrr}31 & 8 & 15 \\-29 & 3 & -24 \\50 & 34 & 66\end{array}\right)\cdot$$
[свернуть]
Соответствие между действиями над операторами и действиями над их матрицами
Тест на знание темы «Соответствие между действиями над операторами и действиями над их матрицами».
Смотрите также
- Воеводин В.В. Линейная алгебра 400 стр. М.: Наука, 1980, cтр. 194-196
- Личный конспект, составленный на основе лекций Белозерова Г.С.
- Проскуряков И.В. Сборник задач по линейной алгебре. 384 стр. М.: Наука, 1984, стр. 189-190