Processing math: 100%

Локальные свойства непрерывных функций

Локальными называют такие свойства функций, которые определяются поведением функции в сколь угодно малой окрестности точки области определения.

Теорема (формулировка)

Пусть f:ER — функция, непрерывная в точке x0R тогда справедливы следующие утверждения:

  • Функция f ограничена в некоторой окрестности UE(x0).
  •  Если f(x0)0, то в некоторой окрестности UE(x0) точки x0 функция f(x)>0
    ( или f(x)<0 ) вместе с f(x0).
  •  Если функция g:UE(x0) R также непрерывна в точке x0, то следующие функции непрерывны в точке x0:
      • f+g
      • fg
      • fg

Если функция g:Y R непрерывна в точке y0Y, а функция f такова, что f:E R, f(x0)=y0, f(E)Y и f непрерывна в точке  x0, то композиция gf непрерывна в точке x0.

Пример 1

Алгебраический многочлен Pn(x)=a0xn+a1xn1++an является непрерывной функцией для xR. Это следует из теоремы 1 и непрерывности функции y=x и y=k.

Пример 2

Рациональная функция R(x)=Pn(x)Qm(x) непрерывна всюду, кроме точек, в которых Qm(x)=0.

Источники:

  1. А.М. Кытманов, Е.К. Лейнартас, О.Н. Черепанова «Математический анализ» / Сиб. федерал. ун-т. — Красноярск, 2010. — 50-53 стр. 
  2. Конспект по математическому анализу Лысенко З.М.

Непрерывная функция

Тест на тему «непрерывные функции»

Таблица лучших: Непрерывная функция

максимум из 6 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Непрерывность функции на множестве

Определение

Непрерывность функции нескольких переменных:

Пусть точка [latex]A[/latex] принадлежит области определения функции [latex] u=f(M)[/latex] нескольких переменных и любая [latex]\varepsilon[/latex]-окрестность точки [latex]A[/latex] содержит отличные от [latex]A[/latex] точки области определения этой функции.

Функция [latex] u=f(M)[/latex] называется непрерывной на множестве [latex]\left \{ M \right \}[/latex], если она непрерывна в каждой точке этого множества.

Основные свойства непрерывных функций нескольких переменных:

Теорема об устойчивости знака непрерывной функции:

Если функция [latex] u=f(M)[/latex] непрерывна в точке [latex]A[/latex] евклидова пространства [latex] E^m [/latex] и если [latex] f(A)\neq0 [/latex], тo существует такая  [latex] \delta [/latex] окрестность точки [latex]A[/latex], в пределах которой во всех точках области своего задания [latex] f(M)[/latex] не обращается в нуль и имеет знак совпадающий со знаком[latex] f(M)[/latex]. Справедливость этой теоремы непосредственно вытекает из определения непрерывности функции в терминах «[latex] \varepsilon — \delta [/latex]».

Теорема о прохождении непрерывной функции через любое промежуточное значение:

Пусть функция [latex] u=f(M)[/latex] непрерывна во всех точках связного множества [latex]\left \{ M \right \}[/latex] евклидова пространства [latex]E^{m}[/latex], причем [latex] f(A)[/latex] и [latex] f(B)[/latex] — значения этой функции в точках [latex]A[/latex] и [latex]B[/latex] этого множества. Пусть, далее, [latex]C[/latex] — любое число, заключенное между [latex] f(A)[/latex] и [latex] f(B)[/latex] . Тогда на любой непрерывной кривой [latex]L[/latex], соединяющей точки [latex]A[/latex] и [latex]B[/latex] и целиком располагающейся в [latex] \left \{ M \right \} [/latex], найдется точка N такая, что [latex] f(N)=C [/latex].

Спойлер

Литература:

Непрерывная функция

Тест на тему «непрерывные функции»

Таблица лучших: Непрерывная функция

максимум из 6 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных