M689. Задача о равнобедренных трапециях и прямоугольнике

Условие

Докажите, что из одинаковых плиток, имеющих форму равнобедренных трапеций с основаниями $3$ см, $1$ см и высотой $1$ см, нельзя составить прямоугольник.

Рис. 1
Рис. 2

Решение

Предположим, что прямоугольник удалось составить из $n$ трапеций. Отметим точки, в которые попадают вершины трапеций, в том числе — четыре вершины прямоугольника. У каждой трапеции два острых угла (по $45^\circ$) и два тупых (по $135^\circ$), так что у всех $n$ трапеций вместе одинаковое число острых и тупых углов — по $2n$ .

рис. 3

рис. 4

рис. 5

С другой стороны, ясно, что в каждой из отмеченных точек расположена не меньше острых углов, чем тупых (если там есть один тупой угол, то есть по крайней мере один острый, а если — два тупых, то и два острых); при этом в вершинах прямоугольника могут оказаться острые углы трапеции. Таким образом, острых углов больше, чем тупых (по крайней мере, на 8).

Полученное противоречие доказывает невозможность составления прямоугольника из трапеций.

С. Рукшин

13.3 Матрица Якоби

Пусть отображение $f : E \longmapsto \mathbb{R}^m \left(E \subset \mathbb{R}^n \right)$ дифференцируемо в точке $x_0 \in E.$ Это значит, что существует такое линейное отображение $A : \mathbb{R}^n \longmapsto \mathbb{R}^m,$ что выполнимо равенство
$$\displaystyle \lim_{h\to0}\frac{|f\left(x_0 + h \right) -f\left(x_0 \right) -A\left(h \right)|}{|h|} = 0.$$

Определение. Матрица линейного отображения $A$ называется матрицей Якоби отображения $f.$

Матрица линейного отображения имеет вид

$$\begin{pmatrix} a^1_1 & a^1_2 & \ldots & a^1_n \\ a^2_1 & a^2_2 & \ldots & a^2_n & \\ \ldots & \ldots & \ldots & \ldots \\ a^m_1 & a^m_2 & \ldots & a^m_n \end{pmatrix}$$

В этой матрице $i$-я строка состоит из чисел $A^i \left(e_1 \right), \ldots, A^i\left(e_n \right),$ где $A^i \left(i = 1, \ldots, m \right)$ — компоненты линейного отображения $A,$ а $e_j \left(j = 1, \ldots, n \right)$ — базисные векторы в пространстве $\mathbb{R}^n.$

Отображение $A$ можно представить в виде $A = \left(A_1, \ldots, A^m \right),$ где $A^j = df^i\left(x_0 \right)$ линейная форма, которую ранее мы назвали производной компоненты $f^i$ в точке $x_0.$

Ранее мы показывали, что производная действительных функций $f^i$: $E \mapsto \mathbb{R} \left(E \subset \mathbb{R^n} \right)$ в точке $x_0 \in E$ — это линейная форма, компонентами которой являются частные производные функции $f^i$ в точке $x_0$ т.е.

$$df^i\left(x_0 \right) = \left(\frac{\partial f^i}{\partial x^1}\left(x_0 \right),\ldots, \frac{\partial f^i}{\partial x^n}\left(x_0 \right) \right).$$

Значением этой линейной формы на векторе $e_j$ будет

$$df^i\left(x_0 \right)\left(e_j \right) = \frac{\partial f^i}{\partial x^j}\left(x_0 \right).$$

Итак, компоненты матрицы $a^i_j = A^i\left(e_j \right) = df^i\left(x_0 \right)\left(e_j \right) = \frac{\partial f^i}{\partial x^j}\left(x_0 \right).$ Таким образом, матрицу Якоби можно переписать в следующем виде:

$$\begin{pmatrix} \frac{\partial f^1}{\partial x^1}(x_0) & \frac{\partial f^1}{\partial x^2}(x_0) & \ldots & \frac{\partial f^1}{\partial x^n}(x_0) \\ \frac{\partial f^2}{\partial x^1}(x_0) & \frac{\partial f^2}{\partial x^2}(x_0) & \ldots & \frac{\partial f^2}{\partial x^n}(x_0) \\ \dots & \dots & \dots & \dots \\ \frac{\partial f^m}{\partial x^1}(x_0) & \frac{\partial f^m}{\partial x^2}(x_0) & \ldots & \frac{\partial f^m}{\partial x^n}(x_0) \end{pmatrix}.$$

Другими словами, производная отображения $f$ задаётся матрицей Якоби, у которой компонентами являются частные производные все компонент отображения $f$ по всем переменным.

Если $m = n,$ то получаем квадратную матрицу, определитель которой называется определителем Якоби или якобианом $Jf\left(x_0 \right)$и обозначается

$$Jf(x) = \frac{\partial (f_1, \ldots, f_n)}{\partial (x_1, \dots, x_n)} = \begin{vmatrix} \frac{\partial f^1}{\partial x^1}(x_0) & \frac{\partial f^1}{\partial x^2}(x_0) & \ldots & \frac{\partial f^1}{\partial x^n}(x_0) \\ \frac{\partial f^2}{\partial x_1}(x_0) & \frac{\partial f^2}{\partial x^2}(x_0) & \ldots & \frac{\partial f^2}{\partial x^n}(x_0) \\ \dots & \dots & \dots & \dots \\ \frac{\partial f^n}{\partial x^1}(x_0) & \frac{\partial f^n}{\partial x^2}(x_0) & \ldots & \frac{\partial f^n}{\partial x^n}(x_0) \end{vmatrix}.$$

Замечание. Если все частные производные непрерывны, то и сам определитель Якоби является непрерывной функцией. Это очевидно.

Пример 1.Являются ли функции функционально зависимыми?

\begin{cases} f_1 = x_1 + x_2 + x_3 -1; \\ f_2 = x_1x_2 + x_1x_3 + x_2x_3 -2; \\ f_3 = x^2_1 + x^2_2 + x^2_3 + 3. \end{cases}

Решение.

$\frac{D(f_1,f_2,f_3)}{D(x_1,x_2,x_3)} = \begin{vmatrix} \\ 1 & 1 & 1 \\ x_2 + x_3 & x_1 + x_3 & x_1 + x_2 \\ 2x_1 & 2x_2 & 2x_3 \end{vmatrix} = $

$=\begin{vmatrix} \\ 1 & 1 & 1 \\ x_1 + x_2 + x_3 & x_1 + x_2 + x_3 & x_1 + x_2 + x_3 \\ 2x_1 & 2x_2 & 2x_3 \end{vmatrix} \equiv 0$

Так как якобиан равен нулю, то эти функции функционально зависимы. Несложно найти эту зависимость:

$\left(f_1 + 1 \right)^2 -2\left(f_2 + 2 \right) -\left(f_3 -3\right) = 0.$

Пример 2. Для линейных функций $f_1 = a_{11} x_1 + \ldots + a_{1n} x_n -b_1, \ldots , f_m = a_{m1} x_1 + a_{mn} x_n -b_m$ матрица Якоби будет матрицей коэффициентов при переменных:

Решение.

\begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{pmatrix}

Если мы хотим разрешить систему $f_1 = 0,f_2 = 0, \ldots, f_n = 0$ относительно $x_1, \ldots, x_n,$ то для случая $m = n$ определитель Якоби

\begin{vmatrix} a_{11} & \ldots & a_{1n} \\ \ldots & \ldots & \ldots \\ a_{n1} & \ldots & a_{nn}\end{vmatrix}

есть определитель системы и для её разрешимости он должен быть отличен от нуля.

Пример 3. Переход элементарной площади $dS = dx\,dy$ от декартовых координат $ \left( x,y \right)$ к полярным координатам $ \left( r,\phi \right)$:

Решение.

$\begin{cases} x = r\,\cos(\phi); \\ y = r\,\sin(\phi). \end{cases}$

Матрица Якоби имеет вид:

$J(r,\phi) = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} \end{pmatrix} = \begin{pmatrix} \cos(\phi) & -r\,\sin(\phi) \\ \sin(\phi) & r\,\cos(\phi) \end{pmatrix}.$

Якобиан перехода от декартовых координат к полярным есть определитель матрицы Якоби:

$J(r,\phi) = \det I(r,\phi) = \det\begin{pmatrix} \cos(\phi) & -r\,\sin(\phi) \\ \sin(\phi) & r\,\cos(\phi) \end{pmatrix}.$

Таким образом, элемент площади при переходе от декартовых к полярным координатам будет выглядеть следующим образом:

$dS = dx\,dy = J\left(r,\phi \right) dr\,d\phi = r\,dr\,d\phi.$

Пример 4.Переход элементарного объёма $dV$=$dx$ $dy$ $dz$ от декартовых координат $\left(x,y,z \right)$ к сферическим координатам $\left(r,\theta,\phi \right)$ :

Решение.

$\begin{cases}x = r\,\sin(\theta)\,\cos(\phi); \\ y = r\,\sin(\theta)\,\sin(\phi); \\ z = r\,\cos(\theta).\end{cases}$

Матрица Якоби имеет следующий вид: $I(r,\theta,\phi) = \begin{pmatrix} \frac{\partial x}{\partial r}   \frac{\partial x}{\partial \theta}   \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r}   \frac{\partial y}{\partial \theta}   \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r}   \frac{\partial z}{\partial \theta}   \frac{\partial z}{\partial \phi} \end{pmatrix} =$

$= \begin{pmatrix} \sin(\theta) \cos(\phi) & r\,\cos(\theta) \cos(\phi) &  -r\,\sin(\theta)\,\sin(\phi) \\ \sin(\theta)\,\sin(\phi) &  r\,\cos(\theta)\,\sin(\phi) & r\,\sin(\theta)\,\cos(\phi) \\ \cos(\theta) & -r\,\sin(\theta) & 0 \end{pmatrix}.$

А якобиан перехода от декартовых координат к сферическим – есть определитель матрицы Якоби:

$J\left(r,\theta,\phi \right) = \det I\left(r,\theta,\phi \right)$ =

= $\begin{vmatrix} \sin(\theta)\,\cos(\phi) & r\,\cos(\theta)\,\cos(\phi) &  -r\,\sin(\theta)\,\sin(\phi) \\ \sin(\theta)\,\sin(\phi) &  r\,\cos(\theta)\,\sin(\phi) & r\,\sin(\theta)\, \cos(\phi) \\ \cos(\theta) & -r\,\sin(\theta) & 0 \end{vmatrix} = r^2\sin(\theta).$

Таким образом, элемент объёма при переходе от декартовых к сферическим координатам будет выглядеть следующим образом:

$dV = dx\,dy\,dz = J\left(r,\theta,\phi \right) dr\,d\theta\,d\phi = r^2\,\sin(\theta)\,dr\,d\theta \,d\phi.$

Матрица Якоби

Для закрепления пройденного материала предлагается пройти тест.

Список использованной литературы

  1. Коляда В.И., Кореновский А.А. Курс лекций по математическому анализу.-Одесса : Астропринт, 2009. стр.309-311
  2. Демидович Б.П. «Сборник задач и упражнений по математическому анализу» 13-е издание, 1997 М.: Изд-во Моск. ун-та, ЧеРо. №3990.
  3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: Том 1 / Г.М. Фихтенгольц – М.: Книга по Требованию, 2013. стр.455-456.

13.3 Матрица Якоби

Рассмотрим отображение $f : E \longmapsto R^m,$ где $E \subset R^n.$ Оно состоит из $m$ функций: $f = \left(f_1 \left(x_1,\ldots,x_n \right),f_2 \left(x_1,\ldots,x_n \right),\ldots,f_m \left(x_1,\ldots,x_n \right) \right),$ которые осуществляют отображение множества $E$ из $R^n$ в пространство $R^m.$

Предположим, что функции $f_k \left(x_1,\ldots,x_n \right),$ где $k = \overline{1,m},$ дифференцируемы, то есть имеют частные производные по аргументам $(x_1,\ldots,x_n):$

$\frac{\partial f_1}{\partial x_1},\ldots,\frac{\partial f_n}{\partial x_n}, x = \overline{1,m}.$

Составим матрицу из этих частных производных по переменным $x_1,\ldots,x_n$

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \ldots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \ldots & \frac{\partial f_2}{\partial x_n} \\ \ldots & \ldots & \ldots & \ldots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Такая матрица называется матрицей Якоби.

Если $m = n,$ то получаем квадратную матрицу, определитель которой называется определителем Якоби или якобианом $Jf(x)$ и обозначается

$$Jf(x) = \frac{\partial (f_1, \ldots, f_n)}{\partial (x_1, \dots, x_n)} = \begin{vmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \ldots & \frac{\partial f_1}{\partial x_n}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \ldots & \frac{\partial f_2}{\partial x_n}(x) \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_n}{\partial x_1}(x) & \frac{\partial f_n}{\partial x_2}(x) & \ldots & \frac{\partial f_n}{\partial x_n}(x) \end{vmatrix}.$$

Замечание. Если все частные производные непрерывны, то и сам оределитель Якоби является непрерывной функцией.

Теорема. Якобиан тождественно равен нулю в некоторой области $\mathbb{S}$:

$\frac{D(f_1,f_2, \ldots, f_n)}{D(x_1,x_2, \ldots, x_n)} \equiv 0$ при $x = \left(x_1, \ldots, x_n \right) \in \mathbb{S}$

тогда и только тогда, когда между функциями $f_1,f_2,\ldots,f_n$ имеется функциональная зависимость в $\mathbb{S},$ то есть существует функция $G \left(y_1,y_2,\ldots,y_n \right) \not \equiv 0$ такая, что

$G \left(f_1(x),f_2(x),\ldots,f_n(x) \right) \equiv 0$ при всех $x = (x_1, \ldots, x_n) \in \mathbb{S}.$

Пример 1.Являются ли функции функционально зависимыми?

\begin{cases} f_1 = x_1 + x_2 + x_3 -1; \\ f_2 = x_1x_2 + x_1x_3 + x_2x_3 -2; \\ f_3 = x^2_1 + x^2_2 + x^2_3 + 3. \end{cases}

Решение.

$\frac{D(f_1,f_2,f_3)}{D(x_1,x_2,x_3)} = \begin{vmatrix} \\ 1 & 1 & 1 \\ x_2 + x_3 & x_1 + x_3 & x_1 + x_2 \\ 2x_1 & 2x_2 & 2x_3 \end{vmatrix} = $

$=\begin{vmatrix} \\ 1 & 1 & 1 \\ x_1 + x_2 + x_3 & x_1 + x_2 + x_3 & x_1 + x_2 + x_3 \\ 2x_1 & 2x_2 & 2x_3 \end{vmatrix} \equiv 0$

Так как якобиан равен нулю, то эти функции функционально зависимы. Несложно найти эту зависимость:

$\left(f_1 + 1 \right)^2 -2\left(f_2 + 2 \right) -\left(f_3 -3\right) = 0.$

Пример 2. Для линейных функций $f_1 = a_{11} x_1 + \ldots + a_{1n} x_n -b_1, \ldots , f_m = a_{m1} x_1 + a_{mn} x_n -b_m$ матрица Якоби будет матрицей коэффициентов при переменных:

Решение.

\begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{pmatrix}

Если мы хотим разрешить систему $f_1 = 0,f_2 = 0, \ldots, f_n = 0$ относительно $x_1, \ldots, x_n,$ то для случая $m = n$ определитель Якоби

\begin{vmatrix} a_{11} & \ldots & a_{1n} \\ \ldots & \ldots & \ldots \\ a_{n1} & \ldots & a_{nn}\end{vmatrix}

есть определитель системы и для её разрешимости он должен быть отличен от нуля.

Пример 3. Переход элементарной площади $dS = dx\,dy$ от декартовых координат $ \left( x,y \right)$ к полярным координатам $ \left( r,\phi \right)$:

Решение.

$\begin{cases} x = r\,\cos(\phi); \\ y = r\,\sin(\phi). \end{cases}$

Матрица Якоби имеет вид:

$$J(r,\phi) = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} \end{pmatrix} = \begin{pmatrix} \cos(\phi) & -r\,\sin(\phi) \\ \sin(\phi) & r\,\cos(\phi) \end{pmatrix}.$$
Якобиан перехода от декартовых координат к полярным есть определитель матрицы Якоби:

$J(r,\phi) = \det I(r,\phi) = \det\begin{pmatrix} \cos(\phi) & -r\,\sin(\phi) \\ \sin(\phi) & r\,\cos(\phi) \end{pmatrix}.$

Таким образом, элемент площади при переходе от декартовых к полярным координатам будет выглядеть следующим образом:

$dS = dx\,dy = J\left(r,\phi \right) dr\,d\phi = r\,dr\,d\phi.$

Пример 4.Переход элементарного объёма $dV$=$dx$ $dy$ $dz$ от декартовых координат $\left(x,y,z \right)$ к сферическим координатам $\left(r,\theta,\phi \right)$ :

Решение.

$\begin{cases}x = r\,\sin(\theta)\,\cos(\phi); \\ y = r\,\sin(\theta)\,\sin(\phi); \\ z = r\,\cos(\theta).\end{cases}$

Матрица Якоби имеет следующий вид: $I(r,\theta,\phi) = \begin{pmatrix} \frac{\partial x}{\partial r}   \frac{\partial x}{\partial \theta}   \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r}   \frac{\partial y}{\partial \theta}   \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r}   \frac{\partial z}{\partial \theta}   \frac{\partial z}{\partial \phi} \end{pmatrix} =$

$= \begin{pmatrix} \sin(\theta) \cos(\phi) & r\,\cos(\theta) \cos(\phi) &  -r\,\sin(\theta)\,\sin(\phi) \\ \sin(\theta)\,\sin(\phi) &  r\,\cos(\theta)\,\sin(\phi) & r\,\sin(\theta)\,\cos(\phi) \\ \cos(\theta) & -r\,\sin(\theta) & 0 \end{pmatrix}.$

А якобиан перехода от декартовых координат к сферическим – есть определитель матрицы Якоби:

$J\left(r,\theta,\phi \right) = \det I\left(r,\theta,\phi \right)$ =

= $\begin{vmatrix} \sin(\theta)\,\cos(\phi) & r\,\cos(\theta)\,\cos(\phi) &  -r\,\sin(\theta)\,\sin(\phi) \\ \sin(\theta)\,\sin(\phi) &  r\,\cos(\theta)\,\sin(\phi) & r\,\sin(\theta)\, \cos(\phi) \\ \cos(\theta) & -r\,\sin(\theta) & 0 \end{vmatrix} = r^2\sin(\theta).$

Таким образом, элемент объёма при переходе от декартовых к сферическим координатам будет выглядеть следующим образом:

$dV = dx\,dy\,dz = J\left(r,\theta,\phi \right) dr\,d\theta\,d\phi = r^2\,\sin(\theta)\,dr\,d\theta \,d\phi.$

Матрица Якоби

Для закрепления пройденного материала предлагается пройти тест.

Список использованной литературы

  1. Коляда В.И., Кореновский А.А. Курс лекций по математическому анализу.-Одесса : Астропринт, 2009. стр.309-311
  2. Демидович Б.П. «Сборник задач и упражнений по математическому анализу» 13-е издание, 1997 М.: Изд-во Моск. ун-та, ЧеРо. №3990.
  3. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: Том 1 / Г.М. Фихтенгольц – М.: Книга по Требованию, 2013. стр.455-456.