Равномерная сходимость и дифференцируемость

Теорема

Пусть [latex]\left \{ f_{n} \right \}[/latex] — последовательность непрерывно дифференцируемых на отрезке [latex]\left[a;b\right][/latex] функций. Предположим, что в некоторой точке [latex]x\in \left[a;b\right][/latex] числовая последовательность [latex]\left \{ f_{n}(x_{0}) \right \}[/latex] сходится, а функциональная последовательность [latex]\left \{ f’_{n} \right \}[/latex] равномерно сходится на [latex]\left[a;b\right][/latex]. Тогда исходная последовательность [latex]\left \{ f_{n} \right \}[/latex] равномерно сходится на [latex]\left[a;b\right][/latex] к непрерывно дифференцируемой функции [latex]f[/latex], причем для любого [latex]x\in \left[a;b\right][/latex] справедливо равенство [latex]f'(x)=\lim_{n\rightarrow \infty }f’_{n}(x)[/latex].

Доказательство

Спойлер

Обозначим [latex]\varphi (x)=\lim_{n\rightarrow \infty }f’_{n}(x)[/latex]. По теореме о непрерывности предела равномерно сходящейся последовательности непрерывных функций получаем, что функция [latex]\varphi[/latex] непрерывна на [latex]\left[a;b\right][/latex]. Положим [latex]g(x)=\int_{x_{0}}^{x}\varphi (t)dt[/latex]. Применим на отрезке с концами [latex]x_{0}[/latex] и [latex]x[/latex]теорему о предельном переходе под знаком интеграла к последовательности [latex]\left \{ f’_{n}(t) \right \}[/latex]. Тогда получим
[latex]g(x)=\int_{x_{0}}^{x}\varphi (t)dt=\lim_{n\rightarrow \infty }\int_{x_{0}}^{x}f’_{n}(t)dt=\lim_{n\rightarrow \infty }(f_{n}(x)-f_{n}(x_{0}))[/latex]
(последнее равенство справедливо в силу формулы Ньютона-Лейбница). По условию теоремы существует [latex]\lim_{n\rightarrow \infty }f_{n}(x_{0})[/latex]. Тогда из равенства [latex]g(x)=\lim_{n\rightarrow \infty }(f_{n}(x)-f_{n}(x_{0}))[/latex] следует, что существует и [latex]\lim_{n\rightarrow \infty }f_{n}(x)[/latex], т.е. мы показали, что последовательность [latex]\left \{ f_{n}(x) \right \}[/latex] сходится на [latex]\left[a;b\right][/latex]. Обозначим [latex]f(x)=\lim_{n\rightarrow \infty }f_{n}(x)[/latex] и получим, что [latex]g(x)=f(x)-f(x_{0})[/latex], а так как функция [latex]g[/latex] дифференцируема (как интеграл с переменным верхним пределом от непрерывной функции [latex]\varphi[/latex]) и [latex]g'(x)=\varphi (x)[/latex](в силу формулы Ньютона-Лейбница), то отсюда следует, что функция [latex]f[/latex] также дифференцируема и [latex]f'(x)=\varphi (x)[/latex], т.е. функция [latex]f[/latex] имеет производную, эта производная непрерывна и справедливо равенство [latex]f'(x)=\lim_{n\rightarrow \infty }f’_{n}(x)[/latex]. Осталось показать, что последовательность [latex]\left \{ f_{n} \right \}[/latex] сходится к функции [latex]f[/latex] равномерно на [latex]\left[a;b\right][/latex]. Имеем
[latex]\left | f_{n}(x)-f(x) \right |\leq \left | (f_{n}(x)-f_{n}(x_{0}))-(f(x)-f(x_{0})) \right |+\left | f_{n} (x_{0})-f(x_{0})\right |[/latex].
Второе слагаемое справа мало при достаточно больших [latex]n[/latex], а первое оцениваем так:
[latex]\left | \int_{x_{0}}^{x}f’_{n}(t)dt-\int_{x_{0}}^{x}\varphi (t)dt \right |=\left | \int_{x_{0}}^{x}(f’_{n}(t)-\varphi (t))dt \right |\leq \int_{a}^{b}\left | f’_{n}(t)-\varphi (t) \right |dt[/latex].
Теперь остается учесть, что последовательность [latex]\left \{ f’_{n} \right \}[/latex] сходится к функции [latex]\varphi[/latex] равномерно на [latex]\left[a;b\right][/latex], и тем самым завершается доказательство теоремы.

[свернуть]

Теорема (о почленном дифференцировании ряда)

Пусть на отрезке [latex]\left[a;b\right][/latex] задана последовательность непрерывно дифференцируемых функций [latex]\left \{ u_{n} \right \}[/latex], такая, что ряд [latex]\sum_{n=1}^{\infty }u_{n}(x)[/latex] сходится в некоторой точке [latex]x\in \left[a;b\right][/latex], а ряд из производных [latex]\sum_{n=1}^{\infty }u’_{n}(x)[/latex] сходится равномерно на [latex]\left[a;b\right][/latex]. Тогда исходный ряд [latex]\sum_{n=1}^{\infty }u_{n}(x)[/latex] равномерно сходится на всем отрезке [latex]\left[a;b\right][/latex], его сумма является непрерывно дифференцируемой функцией и справедливо равенство [latex]\left ( \sum_{n=1}^{\infty }u_{n}(x) \right )’=\sum_{n=1}^{\infty }u’_{n}(x)\; (x\in \left[a;b\right])[/latex].

Доказательство

Спойлер

Для доказательства этой теоремы достаточно применить предыдущую теорему к последовательности частичных сумм ряда [latex]\sum_{n=1}^{\infty }u_{n}(x)[/latex].

[свернуть]

Теорема

Пусть на отрезке [latex]\left[a;b\right][/latex] задана последовательность дифференцируемых функций [latex]\left \{ f_{n} \right \}[/latex], сходящаяся в некоторой точке [latex]x\in \left[a;b\right][/latex] и такова, что функциональная последовательность [latex]\left \{ f’_{n} \right \}[/latex] сходится равномерно на [latex]\left[a;b\right][/latex]. Тогда последовательность [latex]\left \{ f_{n} \right \}[/latex] равномерно сходится на всем отрезке [latex]\left[a;b\right][/latex] к некоторой функции [latex]f[/latex], причем эта функция [latex]f[/latex] дифференцируема на [latex]\left[a;b\right][/latex] и справедливо равенство $$f'(x)=\lim_{n\rightarrow \infty }f’_{n}(x) \; \; \; \; \; (x\in \left[a;b\right])$$.

Доказательство

Спойлер

Зададим [latex]\varepsilon > 0[/latex]. По критерию Коши, в силу равномерной сходимости последовательности [latex]\left \{ f’_{n} \right \}[/latex], существует такой номер [latex]N[/latex], что для всех [latex]n, m\geq N[/latex] и для любого [latex]x\in \left[a;b\right][/latex] справедливо неравенство $$\left | f’_{n}(x)-f’_{m}(x) \right |< \varepsilon$$
Обозначим [latex]\varphi _{n, m}(x)=f_{n}(x)-f_{m}(x)[/latex]. Тогда [latex]\left | \varphi {}’_{n,m}(x) \right |< \varepsilon[/latex] и, в силу формулы Лагранжа, $$\left | \varphi _{n,m}(x)-\varphi _{n,m}(x_{0}) \right |\leq \left | \varphi {}'_{n,m}(\xi ) \right |\cdot \left | x-x_{0} \right |\leq \varepsilon \left | x-x_{0} \right |$$
Отсюда следует, что
$$\left | f_{n}(x)-f_{m}(x) \right |=\left | \varphi _{n,m}(x) \right |\leq \left | \varphi _{n,m}(x)-\varphi _{n,m}(x_{0}) \right |+\left | \varphi _{n,m}(x_{0}) \right |\leq \varepsilon \left | x-x_{0} \right |+\left | f_{n}(x_{0})-f_{m}(x_{0}) \right |$$
Из этого неравенства видно, что последовательность [latex]\left \{ f_{n} \right \}[/latex] удовлетворяет условию критерия Коши, а значит, она равномерно сходится. Обозначим [latex]f(x)=\lim_{n\rightarrow \infty }f_{n}(x)[/latex]. Далее, для [latex]n,m\geq N[/latex] имеем $$\left | \varphi _{n,m}(x+h)-\varphi _{n,m}(x) \right |\leq \varepsilon \left | h \right |\; \; \; \; \; (x, x+h\in \left [ a,b \right ])$$
Это неравенство можем переписать так: $$\left | \frac{f_{n}(x+h)-f_{n}(x)}{h} — \frac{f_{m}(x+h)-f_{m}(x)}{h}\right |\leq \varepsilon $$
Устремим [latex]n\rightarrow \infty [/latex] и тогда получим $$\left | \frac{f(x+h)-f(x)}{h} — \frac{f_{m}(x+h)-f_{m}(x)}{h}\right |\leq \varepsilon \; \; \; \; \; (m\geq N)$$
Зафиксируем [latex]m\geq N[/latex] и найдем такое [latex]\delta >0[/latex], что для всех [latex]h[/latex], удовлетворяющих условию [latex]0< \left | h \right |< \delta [/latex], справедливо неравенство $$\left | \frac{f_{m}(x+b)-f_{m}(x)}{h} -f{}'_{m}(x)\right |< \varepsilon $$
Тогда получим, что $$\left | \frac{f(x+h)-f(x)}{h}-f'_{m}(x) \right |< 2\varepsilon \; \; \; \; \; (0< \left | h \right |< \delta)$$
Если в неравенстве [latex]\left | f'_{n}(x)-f'_{m}(x) \right |< \varepsilon [/latex] ([latex]n, m\geq N[/latex]) перейдем к пределу при [latex]n\rightarrow \infty [/latex] (как уже доказано, он существует), то получим $$\left | \varphi (x)-f'_{m}(x) \right |\leq \varepsilon$$ где обозначено [latex]\varphi (x)=\lim_{n\rightarrow \infty }f'_{n}(x)[/latex]. Отсюда следует, что $$\left | \frac{f(x+h)-f(x)}{h}-\varphi(x) \right |< 3\varepsilon \; \; \; \; \; (0< \left | h \right |< \delta)$$
Это означает, что существует $$\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}=\varphi (x)=\lim_{n\rightarrow \infty }f'_{n}(x) \; \; \; \; \; \; (x \in \left[a;b\right])$$ .

[свернуть]

Тесты

Равномерная сходимость и дифференцируемость

Проверьте свои знания по теме «Равномерная сходимость и дифференцирование»

Равномерная сходимость и интегрирование

Пусть [latex]f_{n}[/latex] — последовательность интегрируемых на отрезке [latex]\left[a;b\right][/latex] функций, поточечно сходящаяся к функции [latex]f[/latex]. Поставим вопрос об интегрируемости на отрезке [latex]\left[a;b\right][/latex] предельной функции [latex]f[/latex] и справедливости равенства
$$ \lim_{n\rightarrow \infty }\int\limits_{a}^{b}f_{n}(x)dx=\int\limits_{a}^{b}f(x)dx $$
Следующие примеры показывают, что в общем случае и интегрируемости нет, и равенство не выполняется.

Пример 1

Пусть [latex]\left \{ r_{n} \right \}_{n=1}^{\infty }[/latex] — последовательность всех рациональных точек из отрезка [latex]\left[0;1\right][/latex]. Выразим:
$$f_{n}(x)=\left\{\begin{matrix}1,&x\in \left \{ r_{1},\cdots ,r_{n} \right \},\\ 0,& x\in \left[0;1\right]\setminus \left \{ r_{1},\cdots ,r_{n} \right \}\end{matrix}\right.$$
Тогда каждая функция [latex]f_{n}[/latex] интегрируема на отрезке [latex]\left[0;1\right][/latex], потому что она имеет лишь конечное число точек разрыва [latex]\left \{ r_{1},\cdots r_{n}\right \}[/latex]. С другой стороны, видно, что $$\lim_{n\rightarrow \infty }f_{n}(x)=D(x)$$ где D — функция Дирихле. Но как известно, функция Дирихле не интегрируема на отрезке [latex]\left[0;1\right][/latex].
Вывод: мы построили последовательность интегрируемых функций, сходящуюся к неинтегрируемой функции.

Замечание (для рядов)

Спойлер

Из примера 1 легко получить пример, который показывает, что сумма функционального ряда, слагаемые которого интегрируемы, не обязана быть интегрируемой.
Действительно, положим [latex]u_{n}(x)=f_{n}(x)-f_{n-1}(x)[/latex], [latex]u_{1}(x)=f_{1}(x)[/latex], [latex]u_{2}(x)=f_{2}(x)-f_{1}(x)[/latex].
Частичные суммы ряда [latex]s_{n}(x)=f_{n}(x)[/latex]. И [latex]\sum_{n=1}^{\infty }u_{n}(x)dx=f(x)[/latex].

[свернуть]

Пример 2

Положим [latex]f_{n}(0)=f_{n}(\frac{1}{n})=f_{n}(1)=0, f_{n}(\frac{1}{2n})=n[/latex], а на отрезках [latex]\left[0;\frac{1}{2n}\right], \left[\frac{1}{2n};\frac{1}{n}\right], \left[\frac{1}{n};1\right][/latex] функция [latex]f_{n}[/latex] — линейна. Мы видим, что [latex]\lim_{n\rightarrow \infty }f_{n}(x)=0,\; \forall x\in \left[0;1\right][/latex], так что предельная функция [latex]f(x)\equiv 0\; (x\in \left[0;1\right])[/latex] интегрируема и [latex]\int_{0}^{1}f(x)dx=0[/latex]. С другой стороны, очевидно, что [latex]\int_{0}^{1}f_{n}(x)dx=\frac{1}{2}[/latex], поэтому предельный переход под знаком интеграла недопустим.
Вывод: даже если предельная функция интегрируема, то предел интегралов не обязан равняться интегралу от предельной функции.

Замечание (для рядов)

Спойлер

Пример 2 позволяет построить ряд из интегрируемых функций такой, что предельная функция интегрирума, но равенство не выполняется.

[свернуть]

Вывод (для рядов)

Воспользовавшись этими примерами мы показали, что нельзя почленно интегрировать сходящийся ряд, т.е. равенство $$\int\limits_{a}^{b}\sum_{n=1}^{\infty }u_{n}(x)dx=\sum_{n=1}^{\infty }\int\limits_{a}^{b}u_{n}(x)dx$$
не верно. Потому что сумма поточечно сходящегося ряда из интегрируемых функций может оказаться неинтегрируемой функцией, а если даже сумма ряда будет функцией интегрируемой, то нужное равенство все равно нельзя гарантировать.

Теорема (об интегрировании равномерно сходящейся последовательности)

Пусть последовательность [latex] \left \{ f_{n}(x) \right \}[/latex] из непрерывных на отрезке [latex]\left[a;b\right ][/latex] функций, равномерно сходится к [latex]f(x)[/latex] на этом отрезке. Тогда существует $$ \lim_{n\rightarrow \infty }\int\limits_{a}^{b}f_{n}(x)dx=\int\limits_{a}^{b}f(x)dx $$

Доказательство

Спойлер

По теореме о непрерывности предела равномерно сходящейся последовательности непрерывных функций: f(x) – непрерывна на [a, b], а значит и интегрируема на этом отрезке. Воспользуемся определением равномерной сходимости: [latex]\forall \varepsilon > 0 \; \exists N \; \forall n\geq N[/latex] и [latex]\forall x\in \left [ a, b \right ][/latex] справедливо неравенство [latex]\left | f_{n}(x)-f(x) \right |< \frac{\varepsilon }{b-a}[/latex]. Проинтегрировав это неравенство, получаем, что при всех [latex]n\geq N : \left | \int_{a}^{b}f_{n}(x)dx — \int_{a}^{b}f(x)dx \right |\leq \int_{a}^{b}\left | f_{n}(x)-f(x) \right |dx< \frac{\varepsilon }{b-a}\left ( b-a \right )=\varepsilon [/latex]
Теорема доказана.

[свернуть]

Следствие (об интегрировании равномерно сходящегося ряда)

Пусть [latex]\left \{ u_{n} \right \}[/latex] — последовательность непрерывных на отрезке [latex]\left[a;b\right][/latex] функций такова, что ряд [latex]\sum_{n=1}^{\infty }u_{n}(x)[/latex] сходится равномерно на [latex]\left[a;b\right][/latex]. Тогда справедливо равенство $$\int\limits_{a}^{b}\sum_{n=1}^{\infty }u_{n}(x)dx=\sum_{n=1}^{\infty }\int\limits_{a}^{b}u_{n}(x)dx$$

Доказательство

Спойлер

Действительно, функции [latex]f_{n}(x)=\sum_{k=1}^{n}u_{k}(x)[/latex] непрерывны как суммы конечного числа непрерывных функций [latex]u_{k}[/latex], и последовательность [latex]\left \{ f_{n} \right \}[/latex] сходится к функции [latex]f(x)=\sum_{n=1}^{\infty }u_{n}(x)[/latex] равномерно на [latex]\left[a;b\right][/latex]. Тогда, по предыдущей теореме, $$\sum_{k=1}^{n}\int\limits_{a}^{b}u_{k}(x)dx=\int\limits_{a}^{b}\sum_{k=1}^{n}u_{k}(x)dx=\int\limits_{a}^{b}f_{n}(x)dx\rightarrow \int\limits_{a}^{b}f(x)dx=\int\limits_{a}^{b}\sum_{n=1}^{\infty }u_{n}(x)dx.$$

[свернуть]
Следующая теорема является обобщением всех теорем об интегрировании равномерно сходящейся последовательности.

Теорема

Пусть [latex]\left\{f_{n}\right\}[/latex] — последовательность интегрируемых на отрезке [latex]\left[a;b\right][/latex] функций, равномерно сходящаяся на этом отрезке к функции [latex]f[/latex]. Тогда предельная функция [latex]f[/latex] интегрируема на [latex]\left[a;b\right][/latex] и справедливо равенство $$\lim_{n\rightarrow \infty }\int\limits_{a}^{b}f_{n}(x)dx=\int\limits_{a}^{b}f(x)dx$$

Доказательство

Спойлер

Оно проводится также, как в предыдущей теореме, при условии, что [latex]\int_{a}^{b}f(x)dx[/latex] существует. Поэтому достаточно доказать лишь интегрируемость на [latex]\left[a;b\right][/latex] функции [latex]f[/latex]. Для этого воспользуемся критерием интегрируемости в терминах колебаний, согласно которому функция [latex]f[/latex] интегрируема на [latex]\left[a;b\right][/latex] тогда и только тогда, когда [latex]\forall \varepsilon > 0 \; \exists \delta > 0, \forall \prod[/latex] — разбиения отрезка [latex]\left[a;b\right][/latex], диаметр которого [latex]d\left ( \prod \right )< \delta [/latex], справедливо неравенство $$\sum_{i=0}^{s-1}\omega _{i}(f)\Delta x_{i}< \varepsilon$$ где [latex]\omega _{i}(f)[/latex] — колебания функции [latex]f[/latex] частичных отрезках [latex]\left[x_{i};x_{i+1}\right][/latex]. Зададим [latex]\varepsilon > 0[/latex] и, пользуясь равномерной сходимостью последовательности [latex]\left \{ f_{n} \right \}[/latex], найдем такое N, что [latex]\forall n\geq N,\; \forall x\in \left [ a;b \right ][/latex] справедливо неравенство [latex]\left | f_{n}(x)-f(x) \right |< \varepsilon [/latex]. Если [latex]\forall n\geq N[/latex], то $$\left | f(x’)-f(x») \right |\leq \left | f(x’)-f_{n}(x») \right |+\left | f_{n}(x’)-f_{n}(x») \right |+\left | f_{n}(x»)-f(x») \right |< \left | f_{n}(x’)-f_{n}(x») \right |+2\varepsilon$$ Отсюда следует, что при любом разбиении [latex]\omega _{i}(f)\leq \omega _{i}(f_{n})+2\varepsilon [/latex], так что $$\sum_{i=0}^{s-1}\omega _{i}(f)\Delta x_{i}\leq \sum_{i=0}^{s-1}\omega _{i}(f_{n})\Delta x_{i}+2\varepsilon \left ( b-a \right )$$ Первое слагаемое справа мало в силу интегрируемости [latex]f_{n}[/latex], т.е. [latex]\exists \delta > 0, \; \forall \prod ,\; d(\prod )< \delta [/latex], первое слагаемое справа будет меньшим, чем [latex]\varepsilon [/latex]. Поэтому, в силу критерия интегрируемости в терминах колебаний, получаем, что функция [latex]f[/latex] интегрируема на [latex]\left[a;b\right][/latex].
1

[свернуть]

Тесты

равномерная сходимость и интегрирование

Проверьте свои знания по теме «Равномерная сходимость и интегрирование»

M1443. О периодичности некоторой бесконечной последовательности

Задача из журнала «Квант» (1994, №4)

Условие

Бесконечная последовательность чисел [latex]x_{n}[/latex] определяется условиями:[latex]x_{n+1}=1-\left | 1-2x_{n} \right |[/latex], причем [latex]0\leq x_{1}\leq 1[/latex].

  1. Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, если [latex]x_{1}[/latex] рационально.
  2. Сколько существует значений [latex]x_{1}[/latex], для которых эта последовательность — периодическая с периодом T ( для каждого T = 2, 3 [latex]\cdots[/latex] )?

Решение

Положим [latex]f(x)=1-\left | 1-2x \right |[/latex], [latex]f_{n}(x)=\overset{n}{\overbrace{f((\cdots(f}}(x))\cdots))[/latex].

Пусть [latex]x_{1}[/latex] — рациональное число (несократимая дробь вида p/q, где [latex]q=2^{m}(2r-1)[/latex], m и r целые, [latex]m\geq 0[/latex]). Тогда [latex]f(x_{1})[/latex] — тоже рациональное, причем его знаменатель не больше, чем у [latex]x_{1}[/latex] (точнее, он тот же, если m=0, и вдвое меньше, если m>0), причем если [latex]0\leq x_{1}<1[/latex], то [latex]0\leq f(x_{1})\leq 1[/latex]. Точно так же, числа [latex]f_{n}(x_{1})[/latex] будут рациональными, со знаменателем не больше, чем у [latex]x_{1}[/latex], и лежащими на отрезке [latex]\left [ 0,1 \right ][/latex]. Но таких чисел конечное число, и значит, среди них встретятся одинаковые:

[latex]f_{n}(x_{1})=f_{n+T}(x_{1})[/latex] при некоторых n и T, так что последовательность [latex]f_{n}(x_{1})[/latex], начиная с некоторого n, — периодическая.

Докажем обратное утверждение. Заметим, что функция y=f(x) на  каждом из отрезков [latex]\left[0;\frac{1}{2}\right][/latex] и [latex]\left[\frac{1}{2};1\right][/latex] — линейная:
[latex]y=2x[/latex] при [latex]0\leq x\leq \frac{1}{2}[/latex], [latex]y=2-2x[/latex] при [latex]\frac{1}{2}\leq x\leq 1[/latex].

Точно так же, функции [latex]y=f_{n}(x)[/latex] на каждом из отрезков [latex]\left[\frac{k}{2^{n}};\frac{k+1}{2^{n}}\right][/latex] — линейная (причем [latex]f_{n}(x)=a_{n}x+b_{n}[/latex], где [latex]a_{n}[/latex], [latex]b_{n}[/latex] — целые, [latex]a_{n}=\pm 2^{n}[/latex]); графики функций [latex]y=f(x)[/latex], [latex]y=f_{2}(x)[/latex], [latex]y=f_{3}(x)[/latex] показаны на рисунке:

1picture

Поэтому если точка x порождает «периодическую траекторию»: [latex]f_{T}(x)=x[/latex] при некотором [latex]T\geq 1[/latex], то x —  корень уравнения [latex]x=a_{T}x+b_{T}[/latex], т.е. число рациональное. Остается еще заметить, что любое y, [latex]0\leq y< 1[/latex], имеет [latex]2^{n}[/latex] «прообразов» при отображении [latex]x\rightarrow f_{n}(x)[/latex], т.е. уравнение [latex]f_{n}(x)=y[/latex] имеет [latex]2^{n}[/latex] решений, причем если y — рациональное, то и все эти решения рациональные. Поэтому если [latex]y=f_{n}(x_{1})=f_{n+T}(x_{1})[/latex] для некоторого [latex]x_{1}[/latex] (т.е. y порождает периодическую траекторию), то и y, и [latex]x_{1}[/latex] — рациональны.

Тем самым, оба утверждения первого пункта доказаны. Что касается второго пункта, как он поставлен в условии задачи, — ответ на него очень прост: таких точек бесконечно много для каждого T. В самом деле, существует (для каждого T=2,3,[latex]\cdots[/latex]) по крайней мере одна точка периода ровно T : это, в частности, «последняя» точка пересечения отрезка [latex]x=y[/latex], [latex]0\leq x< 1[/latex], с графиком [latex]y=f_{n}(x)[/latex]: [latex]x_{T}=2^{T}/(2^{T}+1)[/latex]. (Ясно, что при k<T все решения уравнения [latex]x=f_{k}(x)[/latex] меньше [latex]x_{T}[/latex].) Тогда, взяв в роли [latex]x_{1}[/latex], любой из [latex]2^{n}[/latex] прообразов [latex]x_{T}[/latex] при отображении [latex]x\rightarrow f_{n}(x)[/latex] (лишь один из них входит в «периодическую траекторию» порождаемую [latex]x_{T}[/latex]), мы получим последовательность, которая, начиная с некоторого места, — периодическая с периодом T.

Более интересный вопрос: сколько существует периодических траекторий каждого периода T ( или, что почти тоже самое, — точек x, для которых [latex]x=f_{T}(x)[/latex] и при этом [latex]x\neq f_{k}(x)[/latex] при k<T )? Мы предлагаем читателям подумать над этим и постараемся вернуться к этой теме, получив ваши ответы.
Н.Васильев