Таблица Кэли

Пусть $\mathbb A_{n}=\left \{ a_{1},a_{2},…,a_{n}\right \}$ — конечное множество из $n$ элементов, с заданной на нем бинарной алгебраической операцией $*$ так, что каждой паре элементов из этого множества будет поставлен в соответствие элемент из того же множества.
Тогда таблица Кэли (была введена А.Кэли в 1854) будет выглядеть следующим образом:

$\begin{matrix} * & {\textit a_{1}} & {\textit a_{2}} & {\ldots} & {\textit a_{n}} \\ {\textit a_{1}} & a_{1}*a_{1} & a_{1}*a_{2} & \ldots & a_{1}*a_{n} \\ {\textit a_{2}} & a_{2}*a_{1} & a_{2}*a_{2} & \ldots & a_{2}*a_{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots\\ {\textit a_{n}} & a_{n}*a_{1} & a_{n}*a_{2} & \ldots & a_{n}*a_{n} \\ \end{matrix}$

Таблица Кэли позволяет определить свойства операции:

Замечание. Также существует метод проверки ассоциативности БАО по таблице Кэли, но так как он очень громоздкий приводить мы его не будем.

Пример 1

Дано множество $\mathbb A=\left \{1,2,3,4,5,6,7,8 \right \}.$ На этом множестве задана операция $*$ такая, что $ \forall \, a,b \in \mathbb A, a*b=\max(a,b).$ Построить таблицу Кэли и определить свойства операции:

Спойлер

Построим таблицу Кэли:

$\begin{matrix} * & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 3 & 3 & 3 & 4 & 5 & 6 & 7 & 8\\ 4 & 4 & 4 & 4 & 4 & 5 & 6 & 7 & 8 \\ 5 & 5 & 5 & 5 & 5 & 5 & 6 & 7 & 8\\ 6 & 6 & 6 & 6 & 6 & 6 & 6 & 7 & 8\\ 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 8 \\ 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\ \end{matrix}$

  • Таблица симметрична относительно главной диагонали, значит операция $*$ — коммутативна.
  • Первая строка совпадает с верхней строкой и первый столбец совпадает с левым столбцом, значит 1 — нейтральный элемент.
  • Симметричный элемент существует только для 1.
  • Можем сделать вывод, что $\left (\mathbb A,* \right )$ не является группой.

[свернуть]

Пример 2

Дано множество преобразований правильного треугольника $\mathbb B=\left \{\varphi _{0},\varphi _{1},\varphi _{2},\varphi _{3},\varphi _{4},\varphi _{5} \right \},$ переводящих треугольник в самого себя.
$\varphi _{0},\varphi _{1},\varphi _{2}$ — повороты треугольника против часовой стрелки соответственно на углы $0, \frac{2\pi }{3},\frac{4\pi }{3}$ вокруг точки $O.$
$\varphi _{3},\varphi _{4},\varphi _{5}$ — симметрия относительно осей $m, l, p$
simtriangle
Построить таблицу Кэли и показать, что $\left (\mathbb B,\circ \right )$ — группа:

Спойлер

Каждое преобразование представим в виде подстановки:

$\varphi _{0}=\begin{pmatrix}A & B & C \\ A & B & C\end{pmatrix}$ $\varphi _{1}=\begin{pmatrix}A & B & C \\ B & C & A\end{pmatrix}$ $\varphi _{2}=\begin{pmatrix}A & B & C \\ C & A & B\end{pmatrix}$ $\varphi _{3}=\begin{pmatrix}A & B & C \\ B & A & C\end{pmatrix}$ $\varphi _{4}=\begin{pmatrix}A & B & C \\ C & B & A\end{pmatrix} $ $\varphi _{5}=\begin{pmatrix}A & B & C \\ A & C & B\end{pmatrix}$

Составим таблицу Кэли:

$\begin{matrix} {\circ} & \varphi _{0} & \varphi _{1} & \varphi _{2} & \varphi _{3} & \varphi _{4} & \varphi _{5} \\ \varphi _{0} & \varphi _{0} & \varphi _{1} & \varphi _{2} & \varphi _{3} & \varphi _{4} & \varphi _{5} \\ \varphi _{1} & \varphi _{1} & \varphi _{2} & \varphi _{0} & \varphi _{4} & \varphi _{5} & \varphi _{3} \\ \varphi _{2} & \varphi _{2} & \varphi _{0} & \varphi _{1} & \varphi _{5} & \varphi _{3} & \varphi _{4}\\ \varphi _{3} & \varphi _{3} & \varphi _{5} & \varphi _{4} & \varphi _{0} & \varphi _{2} & \varphi _{1}\\ \varphi _{4} & \varphi _{4} & \varphi _{3} & \varphi _{5} & \varphi _{1} & \varphi _{0} & \varphi _{2} \\ \varphi _{5} & \varphi _{5} & \varphi _{4} & \varphi _{3} & \varphi _{2} & \varphi _{1} & \varphi _{0} \\ \end{matrix}$

  • Таблица несимметрична относительно главной диагонали, значит операция композиции подстановок — некоммутативна.
  • Первая строка совпадает с верхней строкой и первый столбец совпадает с левым столбцом, значит $\varphi _{0}$- нейтральный элемент.
  • Каждая строка и каждый столбец таблицы содержит нейтральный элемент, значит для каждого элемента из множества существует симметричный.
  • Композиция подстановок — ассоциативна.
  • Следовательно, $\left (\mathbb B,\circ \right )$ является группой.

[свернуть]

Литература:

  1. Белозёров Г.С. Конспект лекций.
  2. Кострикин А.И. Введение в алгебру. М., Наука, 1977 г, с.166, 167
  3. Курош А.Г. Теория групп. М., Наука, Физматлит, 1967 г, с.113

Тест


Таблица лучших: Таблица Кэли

максимум из 19 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Определители n-го порядка и их свойства

Вычисление определителей приведением к треугольному виду, разложением по строке, применением общей теоремы Лапласа.

Cвойства определителя

Пример 1

Используя свойства определителя, доказать следующее тождество:
$$\begin{vmatrix}am+bp & an+bq \\ cm+dp & cn+dq \end{vmatrix} = \left(mq-np\right)\begin{vmatrix} a & b\\ c & d \end{vmatrix}$$

Спойлер

Используя аддитивное свойство, представим определитель в виде суммы 4 определителей:
$$\begin{vmatrix}am+bp & an+bq \\ cm+dp & cn+dq \end{vmatrix} =$$ $$\begin{vmatrix}am & an \\ cm & cn \end{vmatrix}+\begin{vmatrix}am & bq \\ cm & dq \end{vmatrix}+\begin{vmatrix}bp & an \\ dp & cn \end{vmatrix}+\begin{vmatrix}bp & bq \\ dp & dq \end{vmatrix}$$
Как видим, столбцы полученных определителей содержат общие множители, которые можно вынести за знак определителя. Получили, что 1 и 4 определители равны нулю, так как имеют равные столбцы:
$$mn\begin{vmatrix}a & a \\ c & c \end{vmatrix} + mq\begin{vmatrix}a & b \\ c & d \end{vmatrix} +np\begin{vmatrix}b & a \\ d & c \end{vmatrix} +pq\begin{vmatrix}b & b \\ d & d \end{vmatrix} =$$
$$= 0 + mq\begin{vmatrix}a & b \\ c & d \end{vmatrix} +np\begin{vmatrix}b & a \\ d & c \end{vmatrix}+0$$
Во втором определителе поменяем столбцы местами, знак перед этим определителем изменится на противоположный. Далее вынесем общий множитель и получим:
$$mq\begin{vmatrix}a & b \\ c & d \end{vmatrix} +np\begin{vmatrix}b & a \\ d & c \end{vmatrix} = mq\begin{vmatrix}a & b \\ c & d \end{vmatrix} — np\begin{vmatrix}a & b \\ c & d \end{vmatrix}=$$
$$=\left(mq-np\right)\begin{vmatrix}a & b \\ c & d \end{vmatrix}$$
Тождество доказано.$\blacksquare$

[свернуть]

Вычисление определителя приведением матрицы к треугольному виду.

Пример 2

Вычислить определитель:

$\Delta =\left|\begin{array}{rrrr}-3 & 9 & 3& 6\\ -5 & 8 & 2 & 7\\ 4 & -5 & -3 & -2\\ 7 & -8 & -4 & -5 \end{array}\right|$

Спойлер

Дальнейшие преобразования будут проще, если элемент $a_{11}$ равен 1 или -1. Для этого из первой строки вынесем 3 за знак определителя:

$\Delta =\left|\begin{array}{rrrr}-3 & 9 & 3& 6\\ -5 & 8 & 2 & 7\\ 4 & -5 & -3 & -2\\ 7 & -8 & -4 & -5 \end{array}\right|=3\cdot\left|\begin{array}{rrrr}-1 & 3 & 1& 2\\ -5 & 8 & 2 & 7\\ 4 & -5 & -3 & -2\\ 7 & -8 & -4 & -5 \end{array}\right|$

Далее нам нужно получить нули в первом столбце. Домножим первую строку на -5 и прибавим ко второй, на 4 и прибавим к третей, на 7 и прибавим к четвертой:

$\Delta =3\cdot\left|\begin{array}{rrrr}-1 & 3 & 1 & 2\\ 0 & -7 & -3 & -3\\ 0 & 7 & 1 & 6\\ 0 & 13 & 3 & 9 \end{array}\right|$

Аналогично, дальнейшие вычисления будут проще, если элемент $a_{22}$ равен 1 или -1. Для этого вторую строку умножим на 2 и прибавим к четвертой строке. Далее поменяем вторую и последнюю строку местами. Перед определителем появится знак «-«.

$\Delta =3\cdot\left|\begin{array}{rrrr}-1 & 3 & 1 & 2\\ 0 & -7 & -3 & -3\\ 0 & 7 & 1 & 6\\ 0 & -1 & -3 & 3 \end{array}\right|=-3\cdot\left|\begin{array}{rrrr}-1 & 3 & 1 & 2\\ 0 & -1 & -3 & 3\\ 0 & 7 & 1 & 6\\ 0 & -7 & -3 & -3 \end{array}\right|$

Далее нам нужно получить нули во втором столбце под элементом $a_{22}$. Для этого умножим вторую строку на 7 и прибавим к третей, на -7 и прибавим к четвертой.

$\Delta =-3\cdot\left|\begin{array}{rrrr}-1 & 3 & 1 & 2\\ 0 & -1 & -3 & 3\\ 0 & 0 & -20 & 27\\ 0 & 0 & 18 & -24 \end{array}\right|$

Прибавим последнюю строку к третьей, потом умножим третью строку на 9 и прибавим к четвертой:

$\Delta =-3\cdot\left|\begin{array}{rrrr}-1 & 3 & 1 & 2\\ 0 & -1 & -3 & 3\\ 0 & 0 & -2 & 3\\ 0 & 0 & 18 & -24 \end{array}\right|=-3\cdot\left|\begin{array}{rrrr}-1 & 3 & 1 & 2\\ 0 & -1 & -3 & 3\\ 0 & 0 & -2 & 3\\ 0 & 0 & 0 & 3 \end{array}\right|$

Привели определитель к треугольному виду. Его значение равно произведению элементов, стоящих на главной диагонали:

$\Delta=-3\cdot\left(\left(-1\right)\cdot\left(-1\right)\cdot\left(-2\right)\cdot\left(3\right)\right)=18$

[свернуть]

Разложение по строке или столбцу

Пример 3

Разлагая по 2-му столбцу, вычислить определитель:

$\Delta =\left|\begin{array}{rrrr}5 & \:\:a & \:\:2 & -1 \\ 4 & b & 4 & -3\\ 3 & c & 3 & -2\\ 4 & d & 5 & -4 \end{array}\right|$

Спойлер

Разложим по второму столбцу:

$\Delta =a\cdot(-1)^{3}\cdot\left|\begin{array}{rrr}4 & \:\:4 & -3 \\ 2 & 3 & -2 \\ 4 & 5 & -4 \end{array}\right|+b\cdot(-1)^{4}\cdot\left|\begin{array}{rrr}5 & \:\:2 & -1 \\ 2 & 3 & -2 \\ 4 & 5 & -4 \end{array}\right|+$

$+\,c\cdot(-1)^{5}\cdot\left|\begin{array}{rrr}5 & \:\:2 & -1 \\ 4 & 4 & -3 \\ 4 & 5 & -4 \end{array}\right|+d\cdot(-1)^{6}\cdot\left|\begin{array}{rrr}5 & \:\:2 & -1 \\ 4 & 4 & -3 \\ 2 & 3 & -2 \end{array}\right|$

Вычислим получившиеся определители по правилу треугольника:

$\Delta =-a\cdot \left(-48-30-32+36+32+40\right)+$

$+b\cdot\left(-60-16-10+12+16+50\right)-$

$-c\cdot \left(-80-24-20+16+32+75\right)+$

$+d\cdot \left(40-12-12+8+45+16\right)=$

$=2a-8b+c+5d$

[свернуть]

Применение общей теоремы Лапласа

Пример 4

Вычислить определитель:

$\Delta =\left|\begin{array}{rrrrr}2 & -1 & 3 & 4 & -5 \\ 4 & -2 & 7 & 8 & -7\\ -6 & 4 & -9 & -2 & 3\\ 3 & -2 & 4 & 1 & -2\\ -2 & 6 & 5 & 4 & -3 \end{array}\right|$

Спойлер

Чтобы облегчить дальнейшие преобразования, из второй строки вычтем удвоенную первую, к третьей строке прибавим удвоенную четвертую:

$\Delta =\left|\begin{array}{rrrrr}2 & -1 & 3 & \: \:\:\: 4 & -5 \\ 0 & 0 & 1 & 0 & 3\\ 0 & 0 & -1 & 0 & -1\\ 3 & -2 & 4 & 1 & -2\\ -2 & 6 & 5 & 4 & -3 \end{array}\right|$

Выберем в определителе вторую и третью строку и получим:

$\Delta = (-1)^{2+3+3+5}\cdot\left|\begin{array}{rr} 1 & 3 \\ -1 & -1\end{array}\right|\cdot \left|\begin{array}{rrr}2 & -1 & \:\:\: 4 \\ 3 & -2 & 1\\ -2 & 6 & 4 \end{array}\right|=$

$\left(-1+3\right)\cdot\left|\begin{array}{rrr}-1 & 2 & 4 \\ -2 & 3 & 1\\ 6 & -2 & \:\:\: 4 \end{array}\right|$

Умножим первый столбец на 2 и прибавим ко второму, на 4 и прибавим к третьему. Разложим по первой строке и получим:

$\Delta =2\cdot\left|\begin{array}{rrrr} -1 & 0 & 0 \\ -2 & -1 & -7 \\ 6 & 10 & 28 \end{array}\right|=2\cdot(-1)\cdot\left|\begin{array}{rr} -1 & -7 \\ 10 & 28 \end{array}\right|=$

$=-2\cdot\left(-28+70\right)=-84$

[свернуть]

Литература:

  1. Белозёров Г.С. Конспект лекций.
  2. Проскуряков И.В. Сборник задач по линейной алгебре. М., Физико-математическая литература, 1978 г., стр. 25, 28, 58

Тест


Таблица лучших: Определители n-го порядка и их свойства. Вычисление определителей.

максимум из 17 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных