М13. Разность и сумма модулей

Задача из журнала «Квант» (1970 год, 11 выпуск)

Условие

Докажите, что если разность между наибольшим и наименьшим из $n$ вещественных чисел $a_1, a_2, \ldots, a_n$ равна $d$, а сумма модулей всех $\frac{n(n-1)}{2}$ попарных разностей этих чисел $\sum\limits_{i<j}|a_i — a_j|$ равна $s$, то $(n-1)$ $d\leqslant s\leqslant \frac{n^2}{4}d$.

Решение

рисунок
Нанесем точки $a_1, a_2, \ldots, a_n$ на числовую ось. Тогда $d$ — расстояние между крайними из этих точек, самой левой и самой правой, а $\sum\limits_{i<j}|a_i — a_j|$ — сумма всех попарных расстояний между этими точками. Можно, очевидно, считать, что точки обозначены через $a_1, a_2, \ldots, a_n$ в порядке возрастания: $a_1 \leqslant a_2\leqslant \ldots \leqslant a_n$ (рисунок). Обозначим расстояние между соседними точками $a_k$ и $a_{k+1}$ через $d_k(k=1, 2, \ldots, n-1)$. Очевидно, $$d=d_1+d_2 \ldots +d_{n-1}.$$ Выразим теперь $s$ через величины $d_k$. Для этого заменим в сумме $s$ длину каждого отрезка $|a_i-a_j|$ суммой тех $d_k$, из которых он состоит: $|a_i-a_j|=d_i+d_{i+1}+\ldots+d_{j-1}$. Ясно, что $d_k$ входит в те отрезки, у которых левый конец лежит в одной из точек $a_1,\ldots, a_k$, а правый — в одной из точек $a_{k+1}, \ldots a_n$, то есть в общей сложности $d_k$ входит в сумму $k(n-k)$ раз. Поэтому $$s=\sum\limits_{k=1}^{n-1}k(n-k)d_k.$$ Теперь доказываемое утверждение следует из двух совсем простых неравенств: для всех $k=1, \ldots, n-1$

  1. $k(n-k)\geqslant n-1\Leftrightarrow kn-k^2-n+1\geqslant 0 \Leftrightarrow (k-1)(n-k-1)\geqslant 0$
  2. $k(n-k)\leqslant\frac{n^2}{4}\Leftrightarrow n^2-4nk+4k^2\geqslant 0 \Leftrightarrow\left(n-2k\right)^2$

Пользуясь этими оценками $$\sum\limits_{k=1}^{n-1}k(n-k)d_k\geqslant \sum\limits_{k=1}^{n-1}(n-1)d_k=(n-1)d,$$ $$\sum\limits_{k=1}^{n-1}k(n-k)d_k\leqslant\sum\limits_{k=1}^{n-1}\frac{n^2}{4}d_k=\frac{n^2}{4}d.$$

Интересно выяснить

Являются ли указанные в условии задачи оценки точными, нельзя ли, скажем, вместо $n-1$ поставить в левом неравенстве большее число? Для того, чтобы убедиться в противном, достаточно привести пример такого случая, когда неравенство превращается в равенство (причем в обеих его частях стоят положительные числа). Такой пример легко придумать, разобравшись в нашем доказательстве: нужно расположить точки $a_1, a_2, \ldots, a_n$ так, чтобы все $d_k$, кроме первого — $d_1$, равнялись нулю, то есть взять $a_1 < a_2 = a_3 = \ldots = a_n$. Тогда $s = (n-1)d_1 = (n-1)d$.

Что касается второго неравенства $s\leqslant \frac{n^2}{4} d$, то при четном $n = 2m$ в нем тоже может достигаться равенство (достаточно взять $a_1 = a_2 = \ldots = a_m \lt a_{m+1} = \ldots = a_2m)$, а при нечетном $n = 2m + 1$ его можно несколько уточнить: нетрудно сообразить, что при нечетном $n$ наибольшее из чисел $k(n-k)$ равно $\frac{n-1}{2} \times \frac{n+1}{2} = \frac{n^2-1}{4}$; пользуясь этим вместо неравенства б), можно так же, как и выше, доказать более сильное неравенство $s \lt \frac{n^2-1}{4}d$. Равенство в нем достигается, когда $a_1 = \ldots = a_m \lt a_{m+1} = \ldots = a_{2m+1}$.

М1339. О связи площади, угла и биссектрисы, проведенной из этого угла

Задача из журнала «Квант» (2002 год, 10 выпуск)

Условие

Дан треугольник $ABC$. Пусть $S$ — его площадь, $\gamma$ — угол $ACB$, а $l$ — длина биссектрисы, проведенной из вершины $C.$

  1. Докажите, что $S \geqslant l^{2} \mathop{\rm tg} \frac \gamma{2}.$
  2. Для каких треугольников $ABC$ выполняется равенство?

Первое решение

Обозначим через $a$ и $b$ стороны $BC$ и $AC$ треугольника $ABC$.

Имеем $$ l=\frac {2ab}{a+b} \cos \frac \gamma{2}$$ (докажите это).

Тогда $$ \begin{multline*}
l^2 \mathop{\rm tg} \frac \gamma{2} = \frac {4a^2b^2}{\left(a+b \right)^2}\cos^2 \frac \gamma{2} \cdot \frac {\sin \frac \gamma{2}}{\cos \frac \gamma{2}} = \\ = \frac {4ab}{a^2+b^2+2ab} \cdot \frac 12 ab \cdot 2\sin \frac \gamma{2} \cos \frac \gamma{2}\leqslant \\
\leqslant \frac {4ab}{2ab+2ab} \cdot \frac 12 ab \sin \gamma = S.
\end{multline*} $$

Очевидно, что равенство выполняется тогда и только тогда, когда $a^2+b^2=2ab$, то есть тогда и только тогда, когда $a=b.$

Второе решение

Пусть $a>b,$ тогда $\angle A > \angle B, $ и угол $CDB$ — тупой. Проведем через точку $D$ отрезок $A’B’$ (см. рисунок), перпендикулярный $CD.$

рис. 1

Поскольку $BD>AD$ (это легко следует из соотношения $\frac {BC}{AC} = \frac {a}{b} > 1$), площадь треугольника $BDB’$ больше площади треугольника $ADA’.$ Поэтому $S>S_{A’CB’}=l^2 \mathop{\rm tg} \frac \gamma{2}.$ При $a=b$ равенство $S = l^{2} \mathop{\rm tg} \frac \gamma{2}$ очевидно.

Н. Немировская, В. Сендеров

Дополнения

Докажем, что $ l=\frac {2ab}{a+b} \cos \frac \gamma{2}.$

Вычислим площади треугольников $BCD$, $ACD$ и $ABC:$ $$ S_{BCD} = \frac 12 \cdot BC \cdot CD \cdot \sin \angle BCD = \frac 12 b l \sin \frac \gamma{2}. $$ $$ S_{ACD} = \frac 12 \cdot AC \cdot CD \cdot \sin \angle ACD = \frac 12 a l \sin \frac \gamma{2}.$$ $$S_{ABC} = \frac 12 \cdot AC \cdot BC \cdot \sin \angle BCA = \frac 12 a b \sin \gamma.$$

Выразим $l$, используя равенство $S_{ABC} = S_{BCD} + S_{ACD}:$ $$
\frac 12 ab \cdot \sin \gamma = \frac 12 b l \cdot \sin \frac \gamma{2} + \frac 12 a l \cdot \sin \frac \gamma{2} \Leftrightarrow \frac 12 a b \cdot \sin \gamma = \frac 12 \left(a+b \right) l \sin \frac \gamma{2} \Leftrightarrow $$ $$ \Leftrightarrow l = \frac {ab\sin \gamma}{ \left(a+b \right) \sin \frac \gamma{2}} \Leftrightarrow l = \frac {ab \cdot 2\sin \frac \gamma{2} \cos \frac \gamma{2}}{\left(a+b \right) \sin \frac \gamma{2} } \Leftrightarrow l = \frac {2ab}{a+b} \cos \frac \gamma{2}. $$

М1322. О правильном треугольнике

Задача из журнала «Квант» (1992 год, 7 выпуск)

Условие

Три отрезка, выходящие из разных вершин треугольника $ABC$ и пересекающиеся в одной точке $M$, делят его на шесть треугольников. В каждый из них вписана окружность. Оказалось, что четыре из этих окружностей равны. Следует ли отсюда, что треугольник $ABC$ — правильный, если $M$ — точка пересечения а)медиан, б)высот, в)биссектрис, г)$M$ — произвольная точка внутри треугольника?

Решение

Ответ: а), б), в) да; г) нет.

Назовем треугольники, в которые вписаны окружности равных радиусов, отмеченными. Заметим, что какие-то два из отмеченных треугольников примыкают к одной из сторон треугольника $ABC$. Пусть, для определенности, это будут треугольники $BMD$ и $DMC$.

  1. Рис. 1

    Поскольку равны площади и радиусы вписанных окружностей отмеченных треугольников, равны и их периметры. Поэтому (рис.$1$) $BM = MC$, и, следовательно, $AB = AC$. Пусть $AD = m$, $BE = CF = n$, $AB = AC = l$, $BC = a$, а треугольник $BMF$ — отмеченный. Тогда из равенства периметров треугольника $BMF$ и $BMD$ получаем $$\frac{1}{2}+\frac{n}{3}+\frac{2n}{3}=\frac{a}{2}+\frac{2n}{3}+\frac{m}{3},$$
    т. е. $$\frac{1}{2}+\frac{n}{3}=\frac{a}{2}+\frac{m}{3}. \tag{*}$$
    Пусть $X$ и $Y$ — точки касания вписанных окружностей (см. рис.$1$) со сторонами $BD$ и $BF$, $DX = x$, $FY = y$. Из свойств отрезков касательной следует, что $$BM = \frac{1}{2}-y+\frac{n}{3}-y=\frac{a}{2}-x+\frac{m}{3}-x,$$ и с учетом $\left(*\right)$ получаем $$x=y.$$ Поскольку $\angle ADB$ — прямой, $\angle CFB$ — тоже прямой, т. е. медиана $CF$ является высотой, и треугольник $ABC$ — правильный.

    Если отмечен треугольник $AME$, то, как и раньше, получаем из равенства периметров $$\frac{l}{2}+\frac{2m}{3}+\frac{n}{3}=\frac{a}{2}+\frac{2n}{3}+\frac{m}{3},$$ т. е. $$\frac{l-a}{2}=\frac{n-m}{3}.\tag{**}$$

    Однако во всяком треугольнике большей стороне соответствует меньшая медиана. Поэтому, если $l>a$, то $n<m$, наоборот, при $l<a$ будет $n>m$, так что равенство (**) возможно лишь при $a=l$. Итак, и в этом случае утверждение доказано.

    Остальные ситуации совпадают с разобранными с точностью до обозначений.

  2. Рис. 2

    И в этом случае треугольники $BMD$ и $CMD$ равны (рис.$2$), поскольку $\angle BMD = \angle CMD$ (эти углы равны, так как окружности одинаковых радиусов касаются отрезка $MD$ в одной точке). Значит, $BD=DC$, $AB=AC$, $MF=ME$, $BF=EC$, так что равны треугольники $MBF$ и $MEC$. Если они отмеченные, то равны и треугольники $MBF$ и $MBD$ (у них общая гипотенуза $BM$ и равные радиусы вписанных окружностей, при этом $\angle FBM=\angle MBD$ — в противном случае, фигура $MFBD$ окажется прямоугольником).

    Если отмечены равные треугольники $AMF$ и $AME$, то равны и треугольники $AME$ и $BMD$ (они подобны и имеют одинаковые радиусы вписанных окружностей). Но тогда $AD=BE$, что и завершает доказательство.

  3. Рис. 3

    Мы можем считать отмеченными треугольники $AMF$ и $AME$ (рис.$3$). Но тогда окружности, вписанные в эти треугольники, касаются отрезка $AM$ в общей точке. Отсюда следует, что $\angle AME=\angle AMF$ и $\angle ABE = \angle ACF$, т. е. $\angle B=\angle C$ и $AB=AC$. Если отмечен треугольник $BMF$, то, пользуясь формулой для площади $S=rp$ применительно к треугольникам $AMF$ и $FMB$, получаем $$\frac{AM+MF+AF}{AF}=\frac{MF+BF+BM}{BF}.\tag{***}$$ Применяя к этим треугольникам теорему синусов, перепишем (***) так:$$\frac{\sin\alpha +\sin(2\alpha +\beta )}{\cos\beta }= \frac{\sin\beta +\sin(2\alpha +\beta )}{\cos2\beta },$$ откуда получаем после преобразований (пользуясь тем, что $\alpha +2\beta =\frac{\pi}{2}$), что $$\sin3\beta =1, т. е. \beta =\frac{\pi}{6},$$ т. е. $ABC$ — правильный треугольник.

    Если отмечены треугольники $BMD$ и $CMD$, то , так как точка $M$ — центр вписанной в треугольник $ABC$ окружности, получаем $$\frac{S_{AME}}{AE}=\frac{S_{CMD}}{CD},$$ что дает (формула $S=rp$) $$\frac{AE+EM+MA}{AE}=\frac{CM+MD+DC}{CD},$$ после чего, рассуждая как и раньше, приходим к равенству $$\cos2\beta +\sin3\beta =1+\sin\beta ,$$ из которого находим без труда $\beta =\frac{\pi}{6}$. И в этом случае $ABC$ — правильный треугольник.

  4. Рис. 4

    Треугольник $ABC$ может и не быть равносторонним. Для его построения (рис.$4$) проведем прямую, перпендикулярную $AF$, и выберем на ней точку $M$ так, что $\frac{\pi }{2}>\angle MAF>\frac{\pi }{3}$. В построенные на рисунке 4 углы впишем равные окружности с центрами $O_{1}$ и $O_{2}$, затем из точки $A$ проведем касательную к окружности $O_{2}$. Эта касательная пересечет прямую $MF$, в некоторой точке $C$. Симметрично отразив картинку относительно прямой $MF$, получим неправильный равнобедренный треугольник $ABC$ $\left(AC=BC\right)$, удовлетворяющий условию задачи.

В. Сендеров

M1804. Об иррациональных неравенствах

Задача из журнала «Квант» (2002 год, 1 выпуск)

Условие

Докажите, что $\frac{\displaystyle a}{\displaystyle\sqrt{a^2+8bc}} + \frac{\displaystyle b}{\displaystyle\sqrt{b^2+8ca}} + \frac{\displaystyle c}{\displaystyle\sqrt{c^2+8ab}} \geqslant 1$ для любых положительных чисел $a$, $b$ и $c.$

Доказательство

Так как выражение в левой части однородно относительно $a,\ b$ и $c$ (т.е. $f(a, b, c)$=$f(\lambda a, \lambda b, \lambda c)$), то мы можем считать, что $abc = 1.$ Из равенства $abc = 1$ следует, что $\displaystyle\frac{a}{\sqrt{a^2+8bc}} = \displaystyle\frac{1}{\sqrt{1+\displaystyle\frac{8abc}{a^3}}} = \displaystyle\frac{1}{\sqrt{1+\displaystyle\frac{8}{a^3}}}\ .$ Пусть $1+\displaystyle\frac8{a^3}=x\ , \ 1+\displaystyle\frac8{b^3}=y\ , \ 1+\displaystyle\frac8{c^3}=z\ ,$ тогда нужно доказать неравенство \begin{multline}\displaystyle\frac1{\sqrt{\mathstrut x}} + \displaystyle\frac1{\sqrt{\mathstrut y}} + \displaystyle\frac1{\sqrt{\mathstrut z}} \geqslant 1 \ \Leftrightarrow \ \sqrt{\mathstrut xy} + \sqrt{\mathstrut xz} + \sqrt{\mathstrut yz} \geqslant \sqrt{\mathstrut xyz}\ \Leftrightarrow \\ \Leftrightarrow \ xy + xz + yz + 2\sqrt{x^2yz} + 2\sqrt{xy^2z} + 2\sqrt{xyz^2} \geqslant xyz \ \Leftrightarrow \\ \Leftrightarrow xy + xz + yz + 2\sqrt{\mathstrut xyz} \left(\sqrt{\mathstrut x} + \sqrt{\mathstrut y} + \sqrt{\mathstrut z} \right) \geqslant xyz\ .\end{multline} Теперь, применив неравенство о среднем арифметическом и среднем геометрическом, находим $x = 1 + \underbrace{\displaystyle\frac1{a^3} + … + \displaystyle\frac1{a^3}}_{8\ раз} \geqslant 9\sqrt[9]{1\cdot\left(\displaystyle\frac1{a^3}\right)^8} = \displaystyle\frac9{a^{\frac83}}\ ,$ поэтому $\sqrt{\mathstrut x} \geqslant \displaystyle\frac3{a^{\frac43}}\ .$ Аналогично, $\sqrt{\mathstrut y} \geqslant \displaystyle\frac3{b^{\frac43}}\ , \ \sqrt{\mathstrut z} \geqslant \displaystyle\frac3{c^{\frac43}}\ ,$ следовательно, $\sqrt{\mathstrut xyz} \geqslant \displaystyle\frac{27}{\left(abc\right)^{\frac43}} = 27$ и $\sqrt{\mathstrut x} + \sqrt{\mathstrut y} + \sqrt{\mathstrut z} \geqslant 3\sqrt[3]{\sqrt{\mathstrut xyz}} \geqslant 3\sqrt[3]{\mathstrut 27} = 9\ .$ Поэтому для доказательства неравенства $(1)$ достаточно показать, что \begin{equation}xy + xz + yz + 2 \cdot 27 \cdot 9 \geqslant xyz\ .\end{equation} Положим $\displaystyle\frac8{a^3} = A\ ,\ \displaystyle\frac8{b^3} = B\ ,\ \displaystyle\frac8{c^3} = C\ ,$ тогда $(2)$ примет вид $\left(1+A\right)\left(1+B\right) + \left(1+A\right)\left(1+C\right) + \left(1+B\right)\left(1+C\right) + 486 \geqslant \\ \geqslant \left(1+A\right)\left(1+B\right)\left(1+C\right)\ \Leftrightarrow A+B+C+488 \geqslant ABC\ .$
Но $A \cdot B \cdot C = \displaystyle\frac{8^3}{(abc)^3} = 8^3\ ,$ отсюда $A+B+C \geqslant 3\sqrt[3]{\mathstrut ABC} = 24\ ,$ и, значит, $A+B+C+488 \geqslant 512 = 8^3 = A \cdot B \cdot C\ .$ Утверждение доказано.

(Южная Корея)

M1247. О покрытии плоскости квадратами

Задача из журнала «Квант» (1991 год, 3 выпуск)

Условие

Можно ли покрыть всю плоскость квадратами с длинами сторон $1, 2, 4, 8, 16, …$ (без наложения), используя каждый квадрат не более а) десяти раз; б) одного раза?

Доказательство

  1. Можно. Пример покрытия (где квадрат со стороной $1$ используется $4$ раза, а остальные — по $3$ раза) приведен на рисунке $1$.
    Рис. 1
  2. Нельзя. Предположим, что существует покрытие, в котором все квадраты различны. Поскольку сумма всех чисел не превосходящих $2^{n-1}$, меньше $2^n$ $(1+2+2^2+ … +2^{n-1} = 2^n-1)$, то к каждой стороне любого из квадратов нашего покрытия должна примыкать сторона большего квадрата. Отсюда следует, что каждая вершина квадрата должна лежать на стороне большего квадрата (если вершина $B$ квадрата $ABCD$ лежит на стороне большего квадрата, примыкающего к стороне $AB$ (рис. $2$), то вершина $C$ будет лежать на стороне большего квадрата, примыкающего к $BC$, и т.д.).
Рис. 2

Рассмотрим теперь наименьший из всех квадратов покрытия. Четыре квадрата будут примыкать к нему так, как показано на рисунке $3$.

Рис. 3

Рассмотрим больший из этих квадратов — пусть он примыкает к стороне $AB$ наименьшего (на рисунке — это черный квадрат). Тогда вершина $A$ этого квадрата не лежит на стороне большего, чем он, квадрата. Получили противоречие.

Д.Фомин