M1383. О сумме чисел с разными степенями

Задача из журнала «Квант» (1993 год, 11/12 выпуск)

Условие

Пусть сумма $n$ чисел равна $0$, причем $m$ — наименьшее из них, а $M$ — наибольшее. Докажите, что

  1. сумма квадратов этих чисел не превосходит $-mMn$;
  2. сумма четвертых степеней этих чисел не превосходит $-mMn(m^2 + M^2 +mM)$.

Решение

Пусть $x_{1}, x_{2}, \ldots, x_{n}$ — числа задачи: $$ m \leqslant x_{i} \leqslant M, x_{1}+x_{2}+ \ldots +x_{n} = 0$$

Обозначим сумму их квадратов через $D$, а сумму четвертых степеней — через $F.$

  1. Первое решение. Для каждого числа $x_{i}$ задачи имеем $$(x_{i} — m)(x_{i} — M)\leqslant 0,$$ или $$x_{i}^{2} \leqslant(m+M) x_{i}-m M. \tag{*}$$

    Сложив $n$ этих неравенств, получаем $$D \leqslant -nmM.$$

    Второе решение. При $m = M$ утверждение очевидно. Пусть $m<M$. Расположим в точках $(x_{i},x_{i}^{2})$, где $x_{i}$ — числа задачи, единичные массы. Проведем через точки $(m, m^2)$ и $(M, M^2)$ прямую. Ее уравнение —

    $$\frac{x-m}{M-m}=\frac{y-m^{2}}{M^{2}-m^{2}}.$$

    Поскольку все массы расположены под прямой, этим же свойством обладает и центр масс $(0, D/n).$ Поэтому $$-m(m+M)+m^{2} \geqslant \frac{D}{n},$$ что и требовалось доказать.

  2. Первое решение. Как и во втором решении пункта а) будем считать $m<M$. Попытаемся найти многочлен $x^4 + ax + b$, имеющий корнями числа $m$ и $M$. Заметим сразу, что многочлен такого вида имеет не более двух корней. Действительно, между любыми последовательными корнями многочлена найдется корень его произведения. Следовательно, если многочлен имеет хотя бы три корня, то его производная $4 x^{3} + a$ имеет не менее двух корней. Но уравнение $4 x^{3} = -a$ имеет единственный корень. Тогда из системы $$\left\{\begin{array}{l}m^{4}+a m+b=0 \\M^{4}+a M+b=0 \end{array}\right.$$ получаем $$a=-\left(m^{2}+M^{2}\right)(m+M),$$ $$b=m M\left(m^{2}+M^{2}+m M\right).$$

    С другой стороны, при этих значениях $a$ и $b$ равенства системы выполняются. Окончание решения аналогично первому решению пункта а).

    Второе решение. Рассуждая так же, как при втором решении пункта а), получаем уравнение прямой $$\frac{x-m}{M-m}=\frac{y-m^{4}}{M^{4}-m^{4}},$$ после чего без труда приходим к неравенству $$-m\left(M^{2}+m^{2}\right)(M+m)+m^{4} \geqslant \frac{F}{n},$$ что и требовалось доказать.

    Третье решение. Для каждого числа $x_{i}$ задачи из (*) следует $$\begin{aligned}
    x_{i}^{4} & \leqslant\left((m+M) x_{i}-m M\right)^{2}=\\
    &=(m+M)^{2} x_{i}^{2}-2(m+M) m M x_{i}+m^{2} M^{2}.
    \end{aligned}$$

    Сложив $n$ этих неравенств и воспользовавшись утверждением пункта а), получаем $$F \leqslant-n m M(m+M)^{2}+n m^{2} M^{2},$$ что и требовалось доказать.

  3. Замечание. Неравенство (*), а следовательно, и неравенства задачи превратятся в равенства, если $k$ из чисел $x_{i}$ равны $m$, а $n-k$ остальных равны $M$ (при этом $k m+(n-k) M=0$).

    Н.Васильев, В.Сендеров, Л.Туцеску

M1247. О покрытии плоскости квадратами

Задача из журнала «Квант» (1991 год, 3 выпуск)

Условие

Можно ли покрыть всю плоскость квадратами с длинами сторон $1, 2, 4, 8, 16, …$ (без наложения), используя каждый квадрат не более а) десяти раз; б) одного раза?

Доказательство

  1. Можно. Пример покрытия (где квадрат со стороной $1$ используется $4$ раза, а остальные — по $3$ раза) приведен на рисунке $1$.
    Рис. 1
  2. Нельзя. Предположим, что существует покрытие, в котором все квадраты различны. Поскольку сумма всех чисел не превосходящих $2^{n-1}$, меньше $2^n$ $(1+2+2^2+ … +2^{n-1} = 2^n-1)$, то к каждой стороне любого из квадратов нашего покрытия должна примыкать сторона большего квадрата. Отсюда следует, что каждая вершина квадрата должна лежать на стороне большего квадрата (если вершина $B$ квадрата $ABCD$ лежит на стороне большего квадрата, примыкающего к стороне $AB$ (рис. $2$), то вершина $C$ будет лежать на стороне большего квадрата, примыкающего к $BC$, и т.д.).
Рис. 2

Рассмотрим теперь наименьший из всех квадратов покрытия. Четыре квадрата будут примыкать к нему так, как показано на рисунке $3$.

Рис. 3

Рассмотрим больший из этих квадратов — пусть он примыкает к стороне $AB$ наименьшего (на рисунке — это черный квадрат). Тогда вершина $A$ этого квадрата не лежит на стороне большего, чем он, квадрата. Получили противоречие.

Д.Фомин