Дифференцируемость функции в точке и существование частных производных

Дадим определение дифференцируемости функции в точке.
Определение. Функция $f \left( x \right) = f \left( x_1, \dots, x_n \right)$ называется дифференцируемой в точке $x^0 = \left( x_1^0, \dots, x_n^0 \right)$, если она определена в некоторой окрестности этой точки и существуют такие числа $A_1, \dots, A_n$, что $$f \left( x \right) — f \left( x^0 \right) = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right) \qquad (2)$$ при $x \to x^0$.
Теорема 1. Функция $f \left( x \right)$ дифференцируема в точке $x^0$ в том и только том случае, когда в некоторой окрестности точки $x^0$ функция $f \left( x \right)$ может быть представлена в следующем виде: $$f \left( x \right) = f \left( x^0 \right) + \sum\limits_{i = 1}^{n} f_i \left( x \right) \left( x_i — x_i^0 \right), \qquad (2)$$ где функции $f_i \left( x \right)$ непрерывны в точке $x^0$.

Доказательство

Пусть функция $f \left( x \right)$ дифференцируема в точке $x^0$. Тогда выполнено условие (1). Заметим, что равенство $\psi \left( x \right) = o \left( \rho \left( x, x^0 \right) \right)$ при $x \to x^0$ означает, что $\psi \left( x \right) = \varepsilon \left( x \right) \rho \left( x, x^0 \right)$, где $\lim_{x \to x^0} \varepsilon \left( x \right) = 0$.
Тогда $$\psi \left( x \right) = \frac{ \varepsilon \left( x \right) }{ \rho \left( x, x^0 \right) } \sum\limits_{i = 1}^{n} \left( x_i — x_i^0 \right) ^2 = \\ = \sum\limits_{i = 1}^{n} \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right), \qquad (3)$$
где $\varepsilon \left( x \right) = \varepsilon \left( x \right) \frac{ x_i — x_i^0 }{ \rho \left( x, x^0 \right) }$, $\lim_{ x \to x^0 } \varepsilon \left( x \right) = 0$, так как $0 \leq \frac{ \left| x_i — x_i^0 \right| }{ \rho \left( x, x^0 \right) } \leq 1$.
Доопределим функции $\varepsilon_i \left( x \right)$ в точке $x^0$ по непрерывности, полагая $\lim_{x \to x^0} \varepsilon_i \left( x \right) = \varepsilon_i \left( x^0 \right) = 0$.
Тогда из (1) и (3) получаем $$f \left( x \right) = f \left( x^0 \right) + \sum\limits_{ i = 1 }^{ n } A_i \left( x_i — x_i^0 \right) + \sum\limits_{ i = 1 }^{ n } \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right) = \\ = f \left( x^0 \right) + \sum\limits_{ i = 1 }^{ n } f_i \left( x \right) \left( x_i — x_i^0 \right), f_i \left( x \right) = A_i + \varepsilon_i \left( x \right).$$ Так как функции $\varepsilon_i \left( x \right)$ непрерывны в точке $x^0$, то и функции $f_i \left( x \right)$ непрерывны в точке $x^0$ и $f_i \left( x^0 \right) = A_i, i = \overline{1, n}$.
Пусть выполнено (2). Тогда, воспользовавшись непрерывностью функции $f_i \left( x \right)$ в точке $x^0$, положим $$A_i = f_i \left( x^0 \right), f_i \left( x \right) = A_i + \varepsilon_i \left( x \right), \lim\limits_{x \to x^0} \varepsilon_i \left( x \right) = 0.$$ Получаем $$f \left( x \right) — f \left( x^0 \right) = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + \sum\limits_{i = 1}^{n} \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right) = \\ = \sum\limits_{i = 1}^{n} A_i \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right),$$ так как $$\frac{ \left| \sum\limits_{i = 1}^{n} \varepsilon_i \left( x \right) \left( x_i — x_i^0 \right) \right| }{ \rho \left( x, x^0 \right) } \leq \sum\limits_{i = 1}^{n} \left| \varepsilon_i \left( x \right) \right| \to 0, x \to x^0. $$

[свернуть]

Упражнение 1. Пусть функции $f \left( x \right)$ и $\varphi \left( x \right)$ определены в окрестности точки $x^0 \in \mathbb{R}^n$, функция $f \left( x \right)$ дифференцируема в точке $x^0$ и $f \left( x^0 \right) = 0$, а функция $\varphi \left( x \right)$ непрерывна в точке $x^0$. Доказать, что функция $f \left( x \right) \varphi \left( x \right)$ дифференцируема в точке $x^0$.
Упражнение 2. Доказать, что функция $$\left( x + y \right) \left( x^3 + y^3 \right) ^{\frac{1}{3}}$$ дифференцируема в точке $\left( 0, 0 \right)$.
Указание. Воспользоваться результатом упр. 1.
Пример 1. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^4}$$дифференцируема в точке $\left( 0, 0 \right)$.
Решение

Покажем, что существует число $C > 0$ такое, что для любых $x \in \mathbb{R}$ и $y \in \mathbb{R}$ справедливо неравенство $$\left| \sqrt[3]{x^3 + y^4} — x \right| \leq C \left| y \right| ^{\frac{4}{3}}. \qquad (4)$$ Если $y = 0$, то неравенство (4) справедливо при любом $C$. Пусть $y \ne 0$. Положим $t = xy^{- \frac{4}{3}}$. Тогда неравенство (4) эквивалентно неравенству $\left| \psi \left( t \right) \right| < C$, где $\psi \left( t \right) = \sqrt[3]{1 + t^3} — t$.
Так как функция $\psi \left( t \right)$ непрерывна на $\mathbb{R}$ и $\psi \left( t \right) \to 0$ при $t \to \infty$, то $\psi \left( x \right)$ есть ограниченная функция на $\mathbb{R}$.
Итак, неравенство (4) установлено. Так как $$\left| \frac{ y^{\frac{4}{3}} }{ \sqrt{ x^2 + y^2 } } \right| = \left| y \right| ^{\frac{1}{3}} \frac{ \left| y \right| }{ \sqrt{x^2 + y^2} } \leq \left| y \right| ^{\frac{1}{3}},$$ то $$y^{\frac{4}{3}} = o \left( \sqrt{x^2 + y^2} \right), \left( x, y \right) \to \left( 0, 0 \right),$$ и, следовательно, $$\sqrt[3]{x^3 + y^4} = x + o \left( \sqrt{x^2 + y^2} \right), \left( x, y \right) \to \left( 0, 0 \right),$$ т. е. функция $f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$ дифференцируема в точке $\left( 0, 0 \right)$.

[свернуть]

Пример 2. Показать, что функция $$f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$$недифференцируема в точке $\left( 0, 0 \right)$.
Решение

Первый способ. Пусть функция дифференцируема в точке $\left( 0, 0 \right)$, тогда, согласно определению, существует числа $A$ и $B$ такие, что $$f \left( x, y \right) — f \left( 0, 0 \right) = Ax + By + o \left( \rho \right), \rho = \sqrt{x^2 + y^2},$$ где $f \left( x, y \right) = \sqrt[3]{x^3 + y^3}$, $f \left( 0, 0 \right) = 0$, $A = \frac{ \partial f \left( 0 , 0 \right) }{ \partial x }$, $B = \frac{ \partial f \left( 0, 0 \right) }{ \partial y } = 1$.
Поэтому $$\sqrt[3]{x^3 + y^3} = x + y + o \left( \sqrt{x^2 + y^2} \right).$$ Пусть $x = y > 0$, тогда $$\sqrt[3]{2x} = 2x + 0 \left( x \right)$$ или $\left( \sqrt[3]{2} — 2 \right) x = o \left( x \right)$ при $x \to 0$, что противоречит определению символа $o \left( x \right)$. Следовательно, функция $\sqrt[3]{x^3 + y^3}$ недифференцируема в точке $\left( 0, 0 \right)$.
Второй способ. Если функция $f \left( x, y \right)$ дифференцируема в точке $\left( 0, 0 \right)$, то ее можно в некоторой окрестности этой точки, согласно теореме 1, представить в следующем виде: $$\sqrt[3]{x^3 + y^3} = x \varphi \left( x, y \right) + y \psi \left( x, y \right), \qquad (5)$$где функции $\varphi \left( x, y \right)$ и $\psi \left( x, y \right)$ непрерывны в точке $\left( 0, 0 \right)$.
Пусть $k$ — произвольное число. Положим в (5) $y = kx$. Тогда $$\sqrt[3]{1 + k^3} = \varphi \left( x, kx \right) + k \psi \left( x, kx \right).$$ Переходя к пределу при $x \to 0$ и пользуясь непрерывностью функции $\varphi \left( x, y \right)$ и $\psi \left( x, y \right)$ в точке $\left( 0, 0 \right)$, получаем, что при любом $k$ выполняется равенство $$\sqrt[3]{1 + k^3} + \varphi \left( 0, 0 \right) + k\psi \left( 0, 0 \right) = a + kb.$$
Это неверно, так как функция $\sqrt[3]{1 + k^3}$ не есть линейная функция (ее вторая производная по $k$ не обращается тождественно в нуль).

[свернуть]

Из теоремы 1 следует, что функция $f \left( x \right)$, дифференцируемая в точке $x^0$, непрерывна в этой точке. Обратное утверждение неверно: функция примера 2 непрерывна, но недифференцируема в точке $\left( 0, 0 \right)$.

Необходимое условие дифференцируемости функции в точке.

Теорема 2. Если функция $f \left( x \right)$ дифференцируема в точке $x^0 \in \mathbb{R}^n$, то она имеет в точке $x^0$ все частные производные $\frac{ \partial f }{ \partial x_i } \left( x^0 \right)$, $i = \overline{1, n}$, и $$f \left( x \right) — f \left( x^0 \right) = \\ = \sum\limits_{i = 1}^{n} \frac{ \partial f }{ \partial x_i } \left( x^0 \right) \left( x_i — x_i^0 \right) + o \left( \rho \left( x, x^0 \right) \right), x \to x^0. \qquad (6)$$

Доказательство

Пусть функция $ f \left( x \right)$ дифференцируема в точке $x^0$. Тогда найдутся такие числа $A_1, \dots, A_n$, что при $x \to x_1^0$ будет выполнено равенство (1). Пусть в этом равенстве $x_1 \neq x_1^0$, а $x_2 = x_2^0, \dots, x_n = x_n^0$. Тогда равенство (1) принимает следующий вид: $$f \left( x_1, x_2^0, \dots, x_n^0 \right) — f \left( x_1^0, \dots, x_n^0 \right) = \\ = A_1 \left( x_1 — x_1^0 \right) + o \left( \left| \Delta x_1 \right| \right), x_1 — x_1^0 = \Delta x_1 \to 0.$$ Следовательно, существует предел: $$A_1 = \lim\limits_{\Delta x_1 \to 0} \frac{ f \left( x_1, x_2^0, \dots, x_n^0 \right) — f \left( x_1^0 , \dots, x_n^0 \right) }{ \Delta x_1 } = \frac{ \partial f }{ \partial x_1 } \left( x^0 \right).$$ Аналогично доказывается, что у функции $f \left( x \right)$ в точке $x^0$ существуют и остальные частные производные и что $$A_i = \frac{ \partial f }{ \partial x_i } \left( x^0 \right), i = \overline{ 2, n }.$$ Подставляя эти выражения в равенство (1), получаем (6).

[свернуть]

Функция примера 2 имеет в точке $\left( 0, 0 \right)$ обе частные производные первого порядка: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = \\ = \lim\limits_{x \to 0} \frac{ \sqrt[3]{x^3} }{ x } = 1, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 1.$$ Так как функция $f \left( x, y \right) = sqrt[3]{x^3 + y^3}$ примера 2 недиффиринцируема в точке $\left( 0, 0 \right)$, то этот пример показывает, что из существования частных производных в точке не следует дифференцируемость функции в этой точке. Существование частных производных функции в точке не гарантирует даже непрерывности функции в этой точке.
Так, функция $$f \left( x \right) = \begin{cases} \frac{2xy}{x^2+y^2}, & x^2 + y^2 > 0, \\ 0, & x = y = 0 \end{cases}$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$, а поэтому и не является непрерывной в точке $\left( 0, 0 \right)$. Тем не менее у этой функции в точке $\left( 0, 0 \right)$ существуют обе частные производные: $$\frac{ \partial f }{ \partial x } \left( 0, 0 \right) = \lim\limits_{x \to 0} \frac{ f \left( x, 0 \right) — f \left( 0, 0 \right) }{ x } = 0, \frac{ \partial f }{ \partial y } \left( 0, 0 \right) = 0.$$

Достаточные условия дифференцируемости функции в точке.

Теорема 3. Если все частные производные $\frac{ \partial f }{ \partial x_i }$, $i = \overline{1, n}$ определены в окрестности точки $x^0 \in \mathbb{R}^n$ и непрерывны в точке $x^0$, то функция $f \left( x \right)$ дифференцируема в точке $x^0$.

Доказательство

Рассмотрим случай функции трех переменных. Общий случай рассматривается аналогично. Пусть функции $\frac{ \partial f }{ \partial x } \left( x, y, z \right)$, $\frac{ \partial f }{ \partial y } \left( x, y, z \right)$, $\frac{ \partial f }{ \partial z } \left( x, y, z \right)$ определены в некотором шаре $S_\varepsilon \left( x^0, y^0, z^0 \right)$ и непрерывны в центре шара $\left( x^0, y^0, z^0 \right)$.
Запишем приращения функции в следующем виде: $$f \left( x, y, z \right) — f \left( x^0, y^0, z^0 \right) = \\ = f \left( x, y, z \right) — f \left( x^0, y, z \right) + f \left( x^0, y, z \right) — f \left( x^0, y^0, z \right) + \\ + f \left( x^0, y^0, z \right) — f \left( x^0, y^0, z^0 \right).$$ Пусть $x^0 < x$. Рассмотрим функцию одной переменной $\psi \left( t \right)$ при $t \in \left[ x^0, x \right]$. На этом отрезке функция $\psi \left( t \right)$ имеет производную $$\psi ‘ \left( t \right) = \frac{ \partial f }{ \partial x } \left( t, y, z \right).$$ Применяя формулу конечных приращений Лагранжа для функции $\psi \left( t \right)$ на отрезке $\left[ x^0, x \right]$, получаем $$\psi \left( x \right) — \psi \left( x^0 \right) = \psi ‘ \left( x^0 + \theta \left( x — x^0 \right) \right) \left( x — x^0 \right), 0 < \theta < 1.$$ Если подставить в эту формулу выражение для $\psi \left( t \right)$, то $$f \left( x, y, z \right) — f \left( x^0, y, z \right) = f_1 \left( x, y, z \right) \left( x — x^0 \right), \\ f_1 \left( x, y, z \right) = \frac{ \partial f }{ \partial x } \left( x^0 + \theta \left( x — x^0 \right), y, z \right). \qquad (7)$$ Так как частная производная $\frac{ \partial f }{ \partial x } \left( x, y, z \right)$ непрерывна в точке $\left( x^0, y^0, z^0 \right)$, то существует $$\lim\limits_{ \left( x, y, z \right) \to \left( x^0, y^0, z^0 \right) } f_1 \left( x, y, z \right) = \frac{ \partial f }{ \partial x } \left( x^0, y^0, z^0 \right).$$ Аналогично,$$f \left( x^0, y, z \right) — f \left( x^0, y^0, z \right) = f_2 \left( , y, z \right) \left( y — y^0 \right), \\ f \left( x^0, y^0, z \right) — f \left( x^0, y^0, z^0 \right) = f_3 \left( , y, z \right) \left( z — z^0 \right), \qquad (8)$$ где функции $f_2 \left( x, y, z \right)$ и $f_3 \left( x, y, z \right)$ имеют конечные пределы при $\left( x, y, z \right) \to \left( x^0, y^0, z^0 \right)$. Доопределяя эти функции в точке $\left( x^0, y^0, z^0 \right)$предельным значениями, получим, что функции $f_i \left( x, y, z \right)$, $i = \overline{1, 3}$, непрерывны в точке $\left( x^0, y^0, z^0 \right)$. Таким образом, $$f \left( x, y, z \right) — f \left( x^0, y^0, z^0 \right) = \\ = \left( x — x^0 \right) f_1 \left( x, y, z \right) + \left( y — y^0 \right) f_2 \left( x, y, z \right) + \left( z, z_0 \right) f_3 \left( x, y, z \right).$$ Из непрерывности функций $f_1 \left( x, y, z \right)$, $f_2 \left( x, y, z \right)$ и $f_3 \left( x, y, z \right)$ в точке $ \left( x^0, y^0, z^0 \right)$ и теоремы 1 следует дифференцируемость функции $f \left( x, y, z \right)$ в точке $\left( x^0, y^0, z^0 \right)$.

[свернуть]

Непрерывность частных производных в точке не является необходимым условием дифференцируемости функции в этой точке.
Функция $$f \left( x, y \right) = \begin{cases} \left( x^2 + y^2 \right) \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } }, & x^2 + y^2 > 0, \\ 0, & x = y = 0, \end{cases}$$ дифференцируема в точке $\left( 0, 0 \right)$, так как $$f \left( x, y \right) = 0 \cdot x + 0 \cdot y + o \left( \sqrt{ x^2 + y^2 } \right), \left( x, y \right) \to \left( 0, 0 \right).$$ Но при $x^2 + y^2 > 0$ частная производная$$\frac{ \partial f }{ \partial x } \left( x, y \right) = 2x \sin \frac{ 1 }{ \sqrt{ x^2 + y^2 } } — \frac{ x }{ \sqrt{ x^2 + y^2 } } \cos \frac{ 1 }{ x^2 + y^2 }$$ не имеет предела при $\left( x, y \right) \to \left( 0, 0 \right)$ и, следовательно, не является непрерывной функцией в точке $\left( 0, 0 \right)$. Чтобы в этом убедиться, достаточно показать, что $\frac{ \partial f \left( x, 0 \right) }{ \partial x }$ не имеет предела при $x \to 0$.

Список литературы

Тест

Тест для проверки усвоения материала

Определение криволинейных интегралов второго рода и их свойства. Физический смысл

Пусть в область $\Omega\subset {\mathbb{R}}^{n}$ задано векторное поле, то есть каждой точке из $\Omega$ поставлен в соответствии вектор из ${\mathbb{R}}^{n}$. Это можно записать следующим образом,

$$F(x)=({\varphi}_{1}({x}_{1},…,{x}_{n}),…, {\varphi}_{n}({x}_{1},…,{x}_{n})),$$
где $F$ — векторное поле и $F(x)\in {\mathbb{R}}^{n}$.

Если функции ${\varphi }_{i}$ $(i=1,…,n)$ непрерывные и непрерывно дифференцируемы в области, то поле $F$ также непрерывно и непрерывно дифференцировано в области $\Omega$.

Определение

Если в области $\Omega\subset {\mathbb{R}}^{n}$ задано непрерывное векторное поле $F=({\varphi}_{1},…,{\varphi}_{n})$, а $r=r(t)$ $(\alpha\leq t\leq\beta)$ — уравнение кусочно гладкой кривой $\Gamma$, которая лежит в области $\Omega$, то интеграл:

$$\int\limits_{\Gamma}^{}(F,\,dr)\equiv\int\limits_{\alpha}^{\beta}(F({x}_{1}(t),…,{x}_{n}(t)), r^\prime(t))\,dt\equiv$$ $$\equiv\int\limits_{\alpha}^{\beta}(({\varphi}_{1}({x}_{1}(t),…,{x}_{n}(t)),…,{\varphi}_{n}({x}_{1}(t),…,{x}_{n}(t))), r^\prime(t))\,dt\equiv$$ $$\equiv\int\limits_{\alpha}^{\beta}[{\varphi}_{1}({x}_{1}(t),…,{x}_{n}(t)){x^\prime}_{1}(t)+…+{\varphi}_{n}({x}_{1}(t),…,{x}_{n}(t)){x^\prime}_{n}(t)]\,dt.$$

называется криволинейным интегралом II рода от векторного поля $F$ вдоль кривой $\Gamma$.

Рассмотрим также частный случай когда $\Omega\subset {\mathbb{R}}^{3}$. В этом случае можно обозначить $F=(P(x,y,z),Q(x,y,z),R(x,y,z))$, где $\Gamma: r=r(t)=(x(t),y(t),z(t))$ $(\alpha \leq t\leq \beta)$. Тогда интеграл имеет следующий вид:
$$\int\limits_{\Gamma}^{}(F,\,dr) =\int\limits_{\Gamma}^{}P(x,y,z)\,dx+Q(x,y,z)\,dy+R(x,y,z)\,dz=$$ $$=\int\limits_{\alpha}^{\beta}[P(x(t),y(t),z(t))x^\prime(t) +Q(x(t),y(t),z(t))y^\prime(t)+$$ $$+R(x(t),y(t),z(t))z^\prime(t)]\,dt.$$

Свойства криволинейных интегралов II рода:

Рассматривать свойства будем для области $\Omega\subset {\mathbb{R}}^{3}$, так как для $\Omega\subset {\mathbb{R}}^{n}$ $(n\geq 3)$ изменения очевидны.

  1. Криволинейный интеграл II рода не зависит от способа параметризации кривой

    [spoilergroup]

    Доказательство

    Пусть $\Gamma: r=r(t)=(x(t),y(t),z(t))$ $(\alpha\leq t\leq\beta)$ и $\Gamma: \rho=\rho(\tau)$ $(a\leq\tau\leq b)$, то $t=t(\tau), t(a)=\alpha, t(b)=\beta$ и $t$ — кусочно гладкая непрерывно дифференцируемая функция переменной $\tau$. Тогда:

    $$\int\limits_{\Gamma}^{}(F,\,dr)=\int\limits_{\alpha}^{\beta}[P(x(t),y(t),z(t))x^\prime(t)+$$ $$+Q(x(t),y(t),z(t))y^\prime(t)+$$ $$+R(x(t),y(t),z(t))z^\prime(t)]\,dt=$$ $$=\int\limits_{a}^{b}[P(x(t(\tau)),y(t(\tau)),z(t(\tau)))x^\prime(t(\tau))+$$ $$+Q(x(t(\tau)),y(t(\tau)),z(t(\tau)))y^\prime(t(\tau))+$$ $$+R(x(t(\tau)),y(t(\tau)),z(t(\tau)))\cdot z^\prime(t(\tau))]\,d\tau=$$ $$=\int\limits_{a}^{b}[P(\tilde{x}(\tau),\tilde{y}(\tau),\tilde{z}(\tau))\tilde{x}^\prime(\tau)+$$ $$+Q(\tilde{x}(\tau),\tilde{y}(\tau),\tilde{z}(\tau))\tilde{y}^\prime(\tau)+$$ $$+R(\tilde{x}(\tau),\tilde{y}(\tau),\tilde{z}(\tau))\tilde{z}^\prime(\tau)]\,d\tau=$$ $$=\int\limits_{\Gamma}^{}(F,\,d\rho),$$

    где $r(t)=(x(t),y(t),z(t))$ $(\alpha\leq t\leq\beta)$, $\rho(\tau)=(\tilde{x}(\tau),\tilde{y}(\tau),\tilde{z}(\tau))$ $(a\leq\tau\leq b)$.

    [свернуть]

    [/spoilergroup]

    Замечание.

    Это доказательство имеет место только в том случае, когда $r=r(t)$ и $\rho=\rho(\tau)$ определяют одну и ту же кривую $\Gamma$ и имеют одну и ту же ориентацию.

  2. Криволинейный интеграл II рода при изменении ориентации кривой на противоположную меняет знак

    $$\int\limits_{\Gamma}^{}(F,\,dr)=-\int\limits_{{\Gamma}^{-}}^{}(F,\,dr).$$
    [spoilergroup]

    Доказательство

    Пусть $\Gamma: r=r(t)$ $(\alpha\leq t\leq\beta)$ и ${\Gamma}^{-}: \rho=r(\alpha+\beta-t)$ $(\alpha\leq t\leq\beta)$. Тогда $\rho^\prime(t)=-r^\prime(\alpha+\beta-t)$. Отсюда получаем:

    $$\int\limits_{{\Gamma}^{-}}^{}(F,\,dr)=\int\limits_{\alpha}^{\beta}(F(\rho(t)),\rho^\prime(t))\,dt=$$ $$=-\int\limits_{\alpha}^{\beta}(F(r(\alpha+\beta-t)),r^\prime(\alpha+\beta-t))\,dt =$$ $$=-\int\limits_{\alpha}^{\beta}(F(r(\tau)),r^\prime(\tau))\,d\tau=-\int\limits_{\Gamma}^{}(F,\,dr).$$

    [свернуть]

    [/spoilergroup]
  3. Криволинейный интеграл II рода аддитивен относительно кривой

    Если $\Gamma=({\Gamma}_{1},…,{\Gamma}_{N})$, то:

    $$\int\limits_{\Gamma}^{}(F,\,dr)=\sum_{i=1}^{N}\int\limits_{{\Gamma}_{i}}^{}(F,\,dr).$$

    Доказательство

    Следует из определения и свойства аддитивности определенного интеграла относительно области интегрирования

Физический смысл

Работа силы

Пусть $F(x,y,z)$ — силовое поле в области $\Omega\subset {\mathbb{R}}^{3}$ и пусть кусочно гладкая кривая ${\Gamma}_{AB}\subset\Omega$ задана уравнением $r=r(t)$, $\alpha\leq t\leq\beta$. Если интерпретировать это уравнение, как закон движения материальной точки, то при таком движении сила, действующая на материальную точку, должна совершать работу. В том случае когда материальная точка движется в постоянном силовом поле с постоянной скоростью по прямой, параллельной вектору $l$, $|l|=1$, работа силы равна $(F,l)\Delta s$, где $\Delta s$ — пройденный путь.

curve3

Изображение вектора силы в случае движения точки по произвольной кусочно гладкой кривой

Теперь рассмотрим случай, когда поле силы непостоянно и точка движется в силовом поле по произвольной кусочно гладкой кривой ${\Gamma}_{AB}\subset\Omega:r=r(t)$, $(\alpha\leq t\leq\beta)$. Пусть $T$ — произвольное разбиение отрезка $[\alpha,\beta]$ точками $\alpha={t}_{0}<{t}_{1}<…<{t}_{n}=\beta$ и ему соответствует разбиение кривой ${\Gamma}_{AB}$ точками $A={A}_{0}\prec{A}_{1}\prec…\prec{A}_{n}=B$.

При движении по дуге ${\Gamma}_{{A}_{i-1}{A}_{i}}$ заменим силу $F$ постоянной силой $F(x({t}_{i}),y({t}_{i}),z({t}_{i}))$, а само движение по этой дуге заменим движением по касательной с постоянной скоростью $r^\prime({t}_{i})$. Тогда работа силы приближенно равна $(F(x({t}_{i}),y({t}_{i}),z({t}_{i})),r^\prime({t}_{i})\Delta{t}_{i})$.

Работа силы при движении материальной точки по кривой ${\Gamma}_{AB}$ приближенно равна следующей сумме:

$${\mathcal{A}}_{T}=\sum_{i=1}^{n}(F(x({t}_{i}),y({t}_{i}),z({t}_{i})),r^\prime({t}_{i}))\Delta{t}_{i},$$

где $\Delta{t}_{i}={t}_{i}-{t}_{i-1}$.

Предел суммы ${\mathcal{A}}_{T}$ при мелкости разбиения $l(T)$, стремящейся к нулю, естественно назвать работой силы $F$ при движении точки по кривой ${\Gamma}_{AB}$. Таким образом, работа силы:

$$\mathcal{A}=\lim_{l(T)\to 0}\sum_{i=1}^{n}(F(x({t}_{i}),y({t}_{i}),z({t}_{i})),r^\prime({t}_{i}))\Delta{t}_{i}=$$ $$=\int\limits_{\alpha}^{\beta}(F(x(t),y(t),z(t)),r^\prime(t))\,dt=\int\limits_{{\Gamma}_{AB}}^{}(F,\,dr).$$

Криволинейные интегралы второго рода

Чтобы убедиться в том что вы усвоили данный материал советую пройти этот тест.


Таблица лучших: Криволинейные интегралы второго рода

максимум из 5 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Разложение в ряд Тейлора основных элементарных функций

Перед тем прочтением данной статьи следует просмотреть следующий материал определение многочлена Тейлора, Остатки формулы Тейлора, Коэффициенты Тейлора, ряд Тейлора.

Разложение основных элементарных функций в ряд Тейлора

Запишем разложения основных элементарных функций в ряд Тейлора в окрестности точки $x_{0}=0$, т.е. в ряд вида $f(x)=$$\sum\limits _{ n=0 }^{ \infty }{ \frac { { f }^{ (n) }(0) }{ n! } } { x }^{ n }$ (1), который называется рядом Маклорена.

Показательная и гиперболические функции

Пусть $f(x)=e^{x}$. Найдем производные функции: ${f}'(x)= e^{x}$, $f^{\prime\prime}( x )=e^{x}$,$\ldots$,$f^{(n)}(x)=e^{x}$. Тогда $0 < f(x) < e^{\rho }$, $0 < f^{(n)}(x) < e^{\rho }$ для любого $x\in(-\rho ,\rho )$, где $\rho > 0$ и для любого $n\in \mathbb{N}$.

Из теоремы о представлении функции в виде ее ряда Тейлора (Курс математического анализа, ст.437) следует, что ряд (1) для $f(x)=e^{x}$ сходится к этой функции на интервале $(-\rho ,\rho )$ при любом $\rho > 0$. Так как для функции $f(x)=e^{x}$ выполняются $f(0)=1$, $f^{(n)}(0)=1$ для всех $n\in \mathbb{N}$, то, по формуле (1), получаем разложение в ряд Маклорена показательной функции:
$$e^{x}=1+x+\frac{x^{2}}{2!}+ \ldots +\frac{x^{n}}{n!}+ \ldots = \sum_{n=0}^{\infty }\frac{x^{n}}{n!}, x\in \mathbb{R} (2)$$

Используя разложение (2), синус и косинус $\text{sh} \, x=\frac{e ^{x}-e ^{-x}}{2}$, $\text{ch} \, x=\frac{e ^{x}+e ^{-x}}{2}$, находим:
$$\text{sh} \, x=x+\frac{x^{3}}{3!}+ \ldots +\frac{x^{2n+1}}{(2n+1)!}+ \ldots =$$ $$=\sum_{n=0}^{\infty }\frac{x^{2n+1}}{(2n+1)!}, x\in \mathbb{R} (3)$$
$$\text{ch} \, x=1+\frac{x^{2}}{2!}+ \ldots +\frac{x^{2n}}{(2n)!}+ \ldots =$$ $$=\sum_{n=0}^{\infty }\frac{x^{2n}}{(2n)!}, x\in \mathbb{R} (4)$$
Радиус сходимости $R=+\infty $.

Тригонометрические функции

Пусть $f(x)=\sin x$. Найдем производные функции: ${f}'(x)= \cos x$, $f^{\prime\prime}(x)= -\sin x$,$\ldots$,$f^{(n)}(x)=\sin x$ при $n$ — четное. Тогда $\left | f^{(n)}(x) \right | \leq 1$, для любого $n\in \mathbb{N}$ и для любого $x\in \mathbb{R}$.

Из теоремы о представлении функции в виде ее ряда Тейлора (Курс математического анализа, ст.437) ряд (1) для $f(x)=\sin x$ сходится для любого $x\in (-\infty , \infty )$. Радиус сходимости $R=+\infty$.

Если $f(x)=\sin x$, то $f(0)=0$, $f^{(2n)}(0)=0$, ${f}'(0)=1$, $f^{(2n+1)}(0)=(-1)^{n}$ для любого $n\in \mathbb{N}$, и, по формуле (1), получаем разложение в ряд Маклорена:
$$\sin x =x-\frac{x^{3}}{3!}+ \ldots +(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}+ \ldots =$$ $$=\sum_{n=0}^{\infty }(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}, x\in \mathbb{R} (5)$$

Пусть $f(x)=\cos x$. Найдем производные функции: ${f}'(x)= -\sin x$, $f^{\prime\prime}(x)= -\cos x$,$\ldots$,$f^{(n)}(x)=\cos x$ при $n$ — четное. Тогда $\left | f^{(n)}(x) \right | \leq 1$, для всех $x\in \mathbb{R}$, $n\in \mathbb{N}$, $f(0)=1$, ${f}'(0)=0$, $f^{(2n)}(0)=(-1)$, $f^{(2n+1)}(0)=0$ для всех $n\in \mathbb{N}$. По формуле (1):
$$\cos x =1-\frac{x^{2}}{2!}+ \ldots +(-1)^{n}\frac{x^{2n}}{(2n)!}+ \ldots =$$ $$=\sum_{n=0}^{\infty }(-1)^{n}\frac{x^{2n}}{(2n)!}, x\in \mathbb{R} (6)$$

Радиус сходимости $R=+\infty$.

Логарифмическая функция

Пусть $f(x)=\ln(1+x)$. Тогда $$f^{(n)}(x)=\frac{(-1)^{(n-1)}(n-1)!}{(1+x)^{n}} (7),$$ откуда находим $$\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{(n-1)}}{n}.$$

Оценим остаток по формуле остаточного члена в интегральной форме: $$r_{n}=\frac{1}{n!}\int\limits_{0}^{x}(x-t)^{n}f^{(n+1)}(t)dt=\frac{x^{(n+1)}}{n!}\int\limits_{0}^{1}(1-\tau )^{n}f^{(n+1)}(\tau x)d\tau.$$ Используя равенство (7), получаем $$r_{n}=(-1)^{n}x^{n+1}\int\limits_{0}^{1}\frac{(1-\tau )^{n}}{(1+\tau x)^{n+1}}d\tau.$$ Пусть $\left | x \right | < 1$. Тогда для $0\leq \tau \leq 1$ справедливы неравенства $\left | 1+\tau x \right |\geq 1-\tau \left | x \right |\geq 1-\tau$, $\left | 1+\tau x \right |\geq 1-\left | x \right |$. Отсюда следует, что при любом $n\in \mathbb{N}$ выполняется неравенство $\left | 1+\tau x \right |^{n+1}\geq (1-\tau )^{n}(1-\left | x \right |)$. Используя предыдущее неравенство, получаем оценку остаточного члена: $$\left | r_{n}(x) \right |\leq \left | x \right |^{n+1}\int\limits_{0}^{1}\frac{d\tau }{1-\left | x \right |}=\frac{\left | x \right |^{n+1}}{1-\left | x \right |}\Rightarrow r_{n}(x)\rightarrow 0$$ при $n\rightarrow \infty$, если $\left | x \right |< 1.$

Пусть $x=1$. Тогда $\left | r_{n}(1) \right |=$$\int\limits_{0}^{1}\frac{(1-\tau )^{n}}{(1+\tau )^{n+1}}d\tau$$ \leq \int\limits_{0}^{1}(1-\tau )^{n}d\tau$$ =\frac{1}{n+1}$ $\rightarrow 0.$

Если $x\in (-1,1]$, то остаточный член $r_{n}(x)$ для функции $f(x)=\ln(1+x)$ стремится к нулю при $n\rightarrow \infty.$

В итоге получаем разложение в ряд Маклорена

$$\ln(1+x)=x-\frac{x^{2}}{2}+ \ldots +(-1)^{n+1}\frac{x^{n}}{n}+ \ldots =$$ $$=\sum_{n=1}^{\infty }(-1)^{n+1}\frac{x^{n}}{n}, x\in \mathbb{R} (8)$$
Радиус сходимости $R=1.$

Степенная функция

Пусть $f(x)=(1+x)^{\alpha }$. Если $\alpha =0$, то $f(x)=1$, а если $\alpha =n$, где $n\in \mathbb{N}$, то $f(x)$-многочлен степени $n$, который можно представить в форме бинома Ньютона в форме конечной суммы:
$$f(x)=\sum\limits_{k=0}^{n}C_{n}^{k}x^{k}.$$ Покажем, что если $\alpha \neq 0$ и $\alpha \notin \mathbb{N}$, то функция $f(x)=(1+x)^{\alpha }$ представляется при каждом $x\in (-1,1)$ сходящимся к ней рядом Маклорена $$(1+x)^{\alpha }=\sum\limits_{n=0}^{\infty }C_{\alpha }^{n}x^{n} (9),$$ где $C_{\alpha }^{0}=1$, $C_{\alpha }^{n}=\frac{\alpha (\alpha -1) \ldots (\alpha -n+1))}{n!}$.

Так как $f^{(n+1)}(x)=\alpha (\alpha -1) \ldots (\alpha -n)(1+x)^{\alpha -n-1}$, то по формуле $r_{n}(x)=\frac{x^{(n+1)}}{n!}\int\limits_{0}^{1}(1-\tau )f^{(n+1)}(\tau x)d\tau$ получаем $$r_{n}(x)=A_{n}x^{n+1}\int\limits_{0}^{1}\left ( \frac{1-\tau}{1+\tau x} \right )^{n}(1+\tau x)^{\alpha -1}d\tau,$$ где $C_{n }=\frac{\alpha (\alpha -1) \ldots (\alpha -n)}{n!}.$

Выберем $m\in \mathbb{N}$ такое, чтобы выполнялось условие $\left | \alpha \right |\leq m$. Тогда для всех $n\geq m$ справедливо $\left | A_{n} \right |$$\leq \frac{m(m+1) \ldots (m+n)}{n!}$$\leq \frac{(m+n)!}{n!}=(n+1) \ldots (n+m)\leq (2n)^{m}$. Используя неравенства $\left | 1+\tau x \right |\geq 1-\tau \left | x \right |\geq 1-\tau$, $\left | 1+\tau x \right |\geq 1-\left | x \right |$, а также неравенство $\left | 1+\tau x \right |\leq 1+\left | x \right |$, получаем $0\leq \frac{1-\tau }{1+\tau x}\leq 1$.

Так как $\lim\limits_{t\rightarrow \infty }\frac{t^{m}}{a^{t}}=0$ при $\alpha > 1$, то $\lim\limits_{n\rightarrow \infty }\frac{n^{m}}{\left ( \frac{1}{\left | x \right |} \right )^{n+1}}=0$. Поэтому справедливо равенство $(1+x)^{\alpha }=\sum\limits_{n=0}^{\infty }C_{\alpha }^{n}x^{n}$. Радиус сходимости этого ряда $R=1$ при $\alpha \neq 0$ и $\alpha \notin \mathbb{N}.$

$$(1+x)^{\alpha }=$$ $$1+\alpha x+\frac{\alpha (\alpha -1)}{2!}x^{2}+ \ldots +\frac{\alpha (\alpha -1) \ldots (\alpha -n+1)}{n!}x^{n}+\ldots=$$$$1+\sum_{n=1}^{\infty }\frac{\alpha (\alpha -1) \ldots (\alpha -n+1)}{n!}x^{n}+\ldots, x\in \mathbb{R} (10)$$

    Частные случаи формулы (9):

  • $\frac{1}{1+x}=1-x+x^{2}-\ldots=\sum\limits_{n=0}^{\infty }(-1)^{n}x^{n}, x\in \mathbb{R}$
  • $\frac{1}{1-x}=\sum\limits_{n=0}^{\infty }x^{n}, x\in \mathbb{R}$
Спойлер

Разложить функцию в ряд Маклорена.

$$f(x)=x\cos 3x$$
1

$\cos 3x=1-\frac{(3x)^2}{2!}+\frac{(3x)^4}{4!}-\ldots+(-1)^{n}\frac{(3x)^{2n}}{(2n)!}+\ldots$

Раскрывая скобки, получим

$\cos 3x=1-\frac{3^{2}x^{2}}{2!}+\frac{3^{4}x^{4}}{4!}-\ldots+(-1)^{n}\frac{3^{(2n)}x^{(2n)}}{(2n)!}+ \ldots $

Умножая левую и правую часть на $x$, получим

$x\cos 3x=x(1-\frac{3^{2}x^{2}}{2!}+\frac{3^{4}x^{4}}{4!}-\ldots+(-1)^{n}\frac{3^{(2n)}x^{(2n)}}{(2n)!}+\ldots)$

Таким образом:

$f(x)=x\cos x=x-\frac{3^{2}x^{3}}{2!}+\frac{3^{4}x^{5}}{4!}-\ldots+(-1)^{n}\frac{3^{(2n)}x^{(2n+1)}}{(2n)!}$

[свернуть]

Литература

  • Конспект З.М.Лысенко по математическому анализу
  • А.М.Тер-Крикоров, М.И.Шабунин «Курс математического анализа«, ст. 435-441, 158-165
  • Разложение в ряд Тейлора основных элементарных функций

    Для закрепления материала рекомендуется пройти этот тест

    Формула замены переменной в кратном интеграле

    Теорема (формула замены переменной в кратном интеграле)

    Пусть отображение $F : \Omega \to \mathbb{R}^n$, где $\Omega \subset \mathbb{R}^n$ — открытое множество, заданное при помощи непрерывно дифференцируемых функций $x_i = \phi_i(u_1, \ldots, u_n), i = 1, \ldots, n$, является взаимно однозначным и удовлетворяет следующим условиям:

    1. производные $\frac{\partial \phi_i}{\partial u_i}$ ограничены в $\Omega$;
    2. производные $\frac{\partial \phi_i}{\partial u_i}$ равномерно непрерывны в $\Omega$;
    3. якобиан $J(u)$ отображения удовлетворяет при $u \in \Omega$ условию $\left|J(u)\right| \geq \alpha > 0$.

    Тогда, если $G$ — измеримый компакт с кусочно-гладкой границей, лежащий во множестве $\Omega$ и $f(x)$ — непрерывна на множестве $G’ = F(G)$, то справедлива следующая формула замены переменных в кратном интеграле:
    $$\int\limits_{G’} f(x)\,dx = \int\limits_G f(\phi_1(u), \ldots, \phi_n(u))\left|J(u)\right|\,du\quad(*),$$
    где $x = (x_1, \ldots, x_n),\quad u = (u_1, \ldots, u_n)$.

    Доказательство

    Для начала рассмотрим еще 2 вспомогательных свойства:

    1. Если $L \subset \Omega$ есть непрерывно дифференцируемая кривая, то ее образ $L’ = F(L)$ есть непрерывно дифференцируемая кривая.
    2. Если $G$ — область и $\overline{G} \subset \Omega$ (где $\overline{G}$ — замыкание области $G$), тогда ее образ $G’ = F(G)$. Образ границы $\Omega$ есть граница $\Omega’$.

    Первое свойство является простым следствием правила нахождения производной сложной функции, а второе — теоремы о неявных функциях.

    Рассмотрим доказательство для плоского случая (двойных интегралов). В силу свойств непрерывных функций образ $G’$ компакта $G$ при непрерывном и взаимно однозначном отображении $F$ является компактом, а по свойствам отображения $F$, указанным выше, граница компакта $G’$ является кусочно-гладкой кривой. Кусочно-гладкая кривая имеет жорданову меру нуль, а так как ограниченное множество измеримо по Жордану тогда и только тогда, когда его граница имеет жорданову меру нуль, то компакт $G’$ измерим, а оба интеграла в формуле $(*)$ существуют как интегралы от функций, непрерывных на компактах.

    Поскольку компакт $G$ лежит в открытом множестве $\Omega$, то границы этих множеств не пересекаются. Так как граница любого множества замкнута и граница ограниченного множества ограничена, то расстояние между границами множеств $G$ и $\Omega$ есть положительное число $\delta$.

    Примечание №1: под разбиением множества $A$ далее будем подразумевать совокупность измеримых множеств $\{A_1, \ldots, A_n\}$, таких что $A_1\cup \ldots \cup A_n = A$ и $A_i \cap A_j = \oslash, i \ne j$. Клеткой назовем множество вида $K = \{(x_1, \ldots, x_n)| a_i \leq x_i < b_i, 1 \leq i \leq n\}$, прямоугольником — клетку в пространстве $\mathbb{R}^2$.

    Пусть $P$ есть замкнутый квадрат, содержащий компакт $G$. Если разбить стороны квадрата $P$ на равные части длины $h < \delta$ (чтобы отсутствовали квадраты, содержащие одновременно элементы границ $G$ и $\Omega$), то и сам квадрат $P$ окажется разбит на квадратные клетки с площадью $h^2$. Разбиение квадрата $P$ порождает разбиение $T$ компакта $G.$ Если малый квадрат со стороной $h$ целиком лежит внутри компакта $G$, то он является элементом разбиения $T$, а если он содержит граничные точки $G$, то соответствующим элементом разбиения является пересечение этого квадрата с компактом $G.$ Отображение $F$ порождает разбиение $T’$ компакта $G’ = F(G)$, причем элементами разбиения $T’$ являются образы элементов разбиения $T$. При отбрасывании в интегральной сумме слагаемых, которым отвечают квадраты, имеющие непустое пересечение с множеством жордановой меры нуль, характер соответствующего предела при мелкости разбиения, стремящемся к нулю, не изменится (о чем свидетельствует соответствующая лемма, см. примечание №2). А значит, при написании интегральных сумм можно учитывать только слагаемые, соответствующие целым квадратам и их образам при отображении $F$, остальные квадраты будут иметь непустое пересечение с границей $G$. Так как отображение $F$ равномерно непрерывно, то мелкость разбиения $T’$ стремится к нулю, когда стремится к нулю мелкость разбиения $T$.

    Если малые квадраты $P_1, \ldots, P_n$ лежат внутри компакта $G$, то
    их образы $P_1′, \ldots, P_n’$ лежат внутри $G’$. Пусть $(u_i, v_i)$ — координаты точки, лежащей в левом нижнем углу квадрата $P_i$, a $(\phi(u_i, v_i),\psi(u_i, v_i))$ — образ этой точки при отображении $F$.

    Тогда можем записать интегралы, входящие в формулу $(*)$ как пределы интегральных сумм:
    $\iint\limits_{G’}f(x, y)\,dxdy = \lim\limits_{h \to 0} \sum\limits_{i=1}\limits^n{f(x_i, y_i,)m(P_i’)},$
    $\iint\limits_G f(\phi(u, v), \psi(u, v))\left|J(u, v)\right|\,dudv = $ $\lim\limits_{h \to 0} \sum\limits_{i=1}\limits^n{f(\phi(u_i, v_i), \psi(u_i, v_i))\left|J(u_i, v_i)\right|m(P_i)}.$

    Для доказательства формулы $(*)$ покажем, что разность этих интегральных сумм стремится к нулю при $h \to 0$. В силу леммы о геометрическом смысле модуля якобиана отображения,
    $\left|m(P_i’) — \left|J(u_i, v_i)\right|m(P_i)\right| \leq \alpha(h)m(P_i), \lim\limits_{h \to 0} \alpha(h) = 0$.
    Принимая во внимание, что $\phi(u_i, v_i) = x_i, \psi(u_i, v_i) = y_i, \left|f(x, y)\right| < M$ (последнее в силу того, что функция [latex]f[/latex] непрерывна на компакте, а значит и ограниченна на нем), получаем оценку для разности интегральных сумм:
    $\left|\sum\limits_{i=1}\limits^n{f(x_i, y_i)m(P_i’)} — \sum\limits_{i=1}\limits^n{f(\phi(u_i, v_i), \psi(u_i, v_i))\left|J(u_i, v_i)\right|m(P_i)}\right| \leq $ $\sum\limits_{i=1}\limits^n{\left|f(x_i, y_i)m(P_i’) — f(x_i, y_i)\left|J(u_i, v_i)\right|m(P_i)\right|} = $ $\sum\limits_{i=1}\limits^n{\left|f(x_i, y_i)\left|m(P_i’) — \left|J(u_i, v_i)\right|m(P_i)\right|\right|} \leq $ $M\sum\limits_{i=1}\limits^n{\alpha(h)m(P_i)} = $ $M\alpha(h)\sum\limits_{i=1}\limits^n{m(P_i)} \leq $ $M\alpha(h)m(G)$, из которой следует, что эта разность стремится к нулю при $h \to 0$ (т.к. $M$ и $m(G)$ — константы). Теорема доказана.

    Примечание №2: о геометрическом смысле модуля якобиана отображения можно прочитать, например, в курсе лекций по мат. анализу В.И. Коляда, А.А. Кореновский (т.2, стр. 219) или в Тер-Крикоров А.М. и Шабунин М.И. «Курс математического анализа» (стр. 471). Лемма об отбрасывании слагаемых в интегральной сумме также присутствует и доказана, например, в учебнике Тер-Крикорова, стр. 458.

    Замечание

    Нарушение условия взаимной однозначности на множестве меры нуль и обращение якобиана отображения в
    нуль на множестве меры нуль не влияют на справедливость формулы $(*)$ замены переменных в кратном интеграле. Такое множество $E$ меры нуль всегда можно накрыть клеточным множеством $A \subset G$ сколь угодно малой меры $\epsilon$, разбивающимся на квадраты. Из доказательства теоремы следует, что при отображении $F : G \to \mathbb{R}^n$ мера множества $A$ возрастет не более чем в [latex]c[/latex] раз, где $c$ — фиксированное. Поэтому найдутся такие константы $c_1$ и $c_2$, что $\left|\int\limits_{A’}f(x)\,dx\right| < c_1\epsilon, A’ = F(A),$ $\left|\int\limits_A f(\phi_1(u), \ldots, \phi_n(u))\left|J(u)\right|\,du\right| < c_2\epsilon, \forall \epsilon > 0.$ На множестве $G \setminus A$ условия теоремы выполнены, а так как интегралы $\int\limits_{G’}f(x)\,dx$ и $\int\limits_G f(\phi_1(u), \ldots, \phi_n(u))\left|J(u)\right|\,du$ отличаются на сколь угодно малое число, что следует из соответствующих неравенств, то они совпадают. Данное замечание является важным, в частности, при обосновании перехода к полярным, цилиндрическим и сферическим системам координат.

    [свернуть]

    Примеры

    Основными примерами использования данной формулы являются переход к полярным, цилиндрическим и сферическим координатам для вычисления двойных и тройных интегралов.

    Тест: формула замены переменной в кратном интеграле

    Для закрепления материала, рекомендуется пройти тест по данной теме.


    Таблица лучших: Замена переменной в кратных интегралах

    максимум из 3 баллов
    Место Имя Записано Баллы Результат
    Таблица загружается
    Нет данных

    Использование полярных, цилиндрических и сферических координат для вычисления кратных интегралов

    При вычислении кратных интегралов часто возникает необходимость перейти к более простой области интегрирования для упрощения их вычисления, возможно даже ценой некоторого усложнения подынтегральной функции.

    Использование полярных координат

    Из курса аналитической геометрии известны следующие соотношения между декартовыми и полярными координатами: $x = r\cos\phi,\quad y = r\sin\phi\quad(*)$.
    При этом, $r \geq 0, 0 \leq \phi <2\pi$. Рассмотрим вспомогательную плоскость $RO\Phi$, где $r$ и $\phi$ являются декартовыми координатами, и определим на ней множество точек $G$, такое, что: $G = \{(r, \phi)| r > 0, 0 \leq \phi < 2\pi\}$.

    Тогда формулы $(*)$ определяют непрерывно дифференцируемое отображение $F : G \to \widetilde{XOY}$, где $\widetilde{XOY} = XOY \setminus\{(0, 0)\}$.

    По определению полярных координат, в декартовой системе координат $XOY$ $r$ задает радиус окружности с центром в начале координат, а $\phi$ определяет луч, исходящий из центра координат, такой что угол между лучом и положительным направлением оси $OX$ равен $\phi$. С геометрической точки зрения очевидно, что они пересекаются в единственной точке.

    Таким образом, любую точку $P = (x_0, y_0)$ из $\widetilde{XOY}$ можно однозначно определить пересечением луча, направленного под углом $\phi_0$ и окружности радиусом $r_0$, и тогда точка $P’ = (r_0, \phi_0)$ будет единственным прообразом $P$ в $G$. Очевидно, что любой элемент из $G$ служит прообразом, и что двум различным точкам из $G$ будут соответствовать 2 различные точки из $\widetilde{XOY}$. Таким образом, отображение $F$ между точками плоскостей $G$ и $\widetilde{XOY}$ взаимно однозначное:

    kursach

    Якобиан полученного отображения будет равен:
    $J_F = \begin{array}{|cc|} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} \end{array} = \begin{array}{|cc|} \cos{\phi}& -r\sin{\phi} \\ \sin{\phi} & r\cos{\phi} \end{array} = r$

    Теперь рассмотрим множество точек $G’$, полученное добавлением к множеству $G$ отрезка $r = 0$, т.е. $G’ = \{(r, \phi)| r \geq 0, 0 \leq \phi < 2\pi\}.$ $G’$ уже является прообразом всей плоскости $XOY$, но на отрезке $r = 0, 0 \leq \phi < 2\pi$ не достигается взаимная однозначность, а $\left|J_F\right| = 0$. Обратим внимание, что его Жорданова мера равна нулю.

    Наконец, пусть дана область $\Omega \subset XOY$ и функция $f$, непрерывная на измеримом множестве $\overline{\Omega}$. Ее прообразом при отображении $F$, заданного формулами $(*)$, будет некоторая область $\Omega’ \subset G’$. Если область $\Omega$ не содержит точки O — начала координат, то выполнены все условия теоремы о замене переменной в кратных интегралах, и справедлива формула:
    $$\iint\limits_{\Omega} f(x, y)\,dxdy = \iint\limits_{\Omega’} f(r\cos{\phi}, r\sin{\phi})r\,drd\phi$$
    Если же точка $O \in \Omega$, то взаимная однозначность и не обращение якобиана в нуль не выполняются на множестве $r = 0$, что не влияет на справедливость данной формулы (следует из замечания к указанной теореме).

    Пример №1

    Вычислить интеграл:
    $\iint\limits_{\Omega}(x^2 + y^2)\,dxdy, \Omega = \{(x, y)| y \geq 0, x^2 + y^2 \leq a^2\}.$
    Заметим, что в полярных координатах полукруг [latex]\Omega[/latex] будет представлять из себя более простую область интегрирования:

    example

    Поэтому, воспользуемся формулой замены переменной и перейдем к полярным координатам:
    $\iint\limits_{\Omega}(x^2 + y^2)\,dxdy = \iint\limits_{\Omega’}r^2r\,drd\phi = \int\limits_0\limits^{\pi}\,d\phi\int\limits_0\limits^ar^3\,dr = $ $ \int\limits_0\limits^{\pi}\frac{a^4}{4}\,d\phi = \frac{\phi a^4}{4}|_0^{\pi} = \frac{\pi a^4}{4}$.

    [свернуть]

    Использование цилиндрических и сферических координат

    Рассмотрим теперь пространство $\mathbb{R}^3$, в котором задана декартова система координат $OXYZ$. Цилиндрические координаты связанны с декартовыми следующим образом:
    $x = r\cos\phi,\quad y = r\sin\phi,\quad z = t\quad(**),$
    где $r \geq 0, 0 \leq \phi <2\pi, t \in \mathbb{R}$ (величины $r$ и $\phi$ для любой точки $A = (x, y, z)$ определяются таким же образом, как и в полярных координатах для ее проекции $P’ = (x, y, 0)$ на $XOY$). Теперь, аналогично случаю с полярными координатами, рассмотрим вспомогательное пространство $OR\Phi T$, где $r, \phi, t$ — декартовы координаты, а в нем — множество точек $G = \{(r, \phi, t)| r \geq 0, 0 \leq \phi <2\pi, t \in \mathbb{R}\}$.

    Отображение $F : G \to OXYZ$, определяемое формулами $(**)$, является непрерывно дифференцируемым.
    $J_F = \begin{array}{|ccc|} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial t} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial t} \end{array} = \begin{array}{|ccc|} \cos{\phi}& -r\sin{\phi} & 0 \,\\ \sin{\phi} & r\cos{\phi} & 0 \,\\ 0 & 0 & 1\,\end{array} = r$

    Очевидно, что как и в случае с полярными координатами, отображение $F$ — взаимно однозначное, и его якобиан не равен нулю. Данные условия не выполняются только при $r = 0$, т.е. на множестве $L = \{(r, \phi, t)| r = 0, 0 \leq \phi <2\pi, t \in \mathbb{R}\}$. Пересечение такого множества с любым другим ограниченным множеством есть ограниченное линейное множество, и жорданова мера этого пересечения равна нулю.

    Тогда, если дана область $\Omega \subset OXYZ$, и функция $f$ непрерывна на измеримом множестве $\overline{\Omega}$, а $\Omega’ \subset G$ — прообраз данной области при отображении $F$, то выполнены все условия теоремы о замене, и справедлива следующая формула:
    $$\iiint\limits_{\Omega} f(x, y, z)\,dxdydz = \iiint\limits_{\Omega’} f(r\cos{\phi}, r\sin{\phi}, t)r\,drd\phi dt$$

    Наконец, рассмотрим сферические координаты, связанные с декартовыми следующими соотношениями: $x = r\cos{\phi} \cos{\psi},\quad y = r\sin{\phi} \cos{\psi},\quad z = r\sin{\psi}\quad (***),$
    где $r \geq 0, 0 \leq \phi < 2\pi, -\frac{\pi}{2} \leq \psi \leq \frac{\pi}{2}$. Введем вспомогательное пространство $OR\Phi\Psi$, где $r, \phi, \psi$ — декартовы координаты, а в нем рассмотрим множество точек $G = \{(r, \phi, \psi)| r \geq 0, 0 \leq \phi < 2\pi -\frac{\pi}{2} \leq \psi \leq \frac{\pi}{2}\}$.

    Отображение $F : G \to OXYZ$, определяемое формулами $(***)$, непрерывно дифференцируемо.
    $J_F = \begin{array}{|ccc|} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \psi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \psi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \psi} \end{array} = \begin{array}{|ccc|} \cos{\phi}\cos{\psi}& -r\sin{\phi}\cos{\psi} & -r\cos{\phi}\sin{\psi} \,\\ \sin{\phi}\cos{\psi} & r\cos{\phi}\cos{\psi} & -r\sin{\phi}\sin{\psi} \,\\ \sin{\psi} & 0 & r\cos{\psi}\,\end{array} = $ $ r^2\cos{\psi}$.

    Взаимная однозначность данного отображения устанавливается по тем же рассуждениям, что и в предыдущих двух случаях, и не выполняется только при $r = 0, \psi = -\frac{\pi}{2}, \psi = \frac{\pi}{2}$, когда и якобиан равен нулю. Однако любое подмножество множества, задаваемого такими равенствами, будет представлять собой ограниченную часть плоскости с жордановой мерой нуль в пространстве $OXYZ$, что не помешает совершить замену.

    Тогда, при соответствующих условиях, справедлива формула замены переменной ($\Omega \subset OXYZ, \Omega’ \subset G$):
    $$\iiint\limits_{\Omega} f(x, y, z)\,dxdydz = $$ $$\iiint\limits_{\Omega’} f(r\cos{\phi}\cos{\psi}, r\sin{\phi}\cos{\psi}, r\sin{\psi})r^2\cos{\psi}\,drd\phi d\psi$$

    Пример №2

    Вычислить интеграл $\iiint\limits_{\Omega} e^{{(x^2 + y^2 + z^2)}^{\frac{3}{2}}}\,dxdydz$, где граница области $\Omega$ задается уравнением $x^2 + y^2 + z^2 = 1$.

    Область интегрирования представляет собой шар радиуса [latex]1[/latex] с центром в начале координат. Следовательно, будет удобно воспользоваться переходом к цилиндрической системе координат. В ней новая область интегрирования [latex]\Omega'[/latex] будет определятся следующими неравенствами: $0 \leq \phi \leq 2\pi,\quad -\frac{\pi}{2} \leq \psi \leq \frac{\pi}{2},\quad 0 \leq r \leq 1$. Воспользуемся формулой замены переменной для сферических координат:
    $\iiint\limits_\Omega e^{(x^2 + y^2 + z^2)^{\frac{3}{2}}}\,dxdydz = $ $\iiint\limits_{\Omega’} e^{r^{2^{\frac{3}{2}}}}r^2\cos{\psi} \,drd\phi d\psi = \int\limits_0\limits^{2\pi}\,d\phi\int\limits_0\limits^1e^{r^3}r^2\,dr\int\limits_{-\frac{\pi}{2}}\limits^{\frac{\pi}{2}}\cos{\psi}\,d\psi = $ $\int\limits_0\limits^{2\pi}\,d\phi\int\limits_0\limits^1e^{r^3}r^2\,dr \cdot (\sin{\psi})|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2\int\limits_0\limits^{2\pi}\,d\phi\int\limits_0\limits^1\frac{1}{3}e^{r^3}\,d(r^3) = $ $\frac{2}{3}\int\limits_0\limits^{2\pi}\,d\phi \cdot e^{r^3}|_0^1 = \frac{2}{3}(e — 1)\int\limits_0\limits^{2\pi}\,d\phi = \frac{2}{3}(e — 1) \cdot \phi|_0^{2\pi} = \frac{4\pi}{3}(e — 1)$

    [свернуть]

    Тест: Использование полярных, цилиндрических и сферических координат для вычисления кратных интегралов

    Для закрепления материала, рекомендуется пройти тест по данной теме.


    Таблица лучших: Переход к полярным, цилиндрическим и сферическим координатам при вычислении кратных интегралов

    максимум из 7 баллов
    Место Имя Записано Баллы Результат
    Таблица загружается
    Нет данных