Непрерывность сложной функции


Теорема 1

Пусть функции $\varphi _{1},…,\varphi _{n}$ определены в некоторой окрестности точки $x_{0}\in R^{m}$ и непрерывны в точке $x_{0}$, а функция $f(y)=f(y_{1},…,y_{n})$определена в окрестности точки $y_{0}=(\varphi _{1}(x_{0}),…,\varphi _{n}(x_{0}))$ и непрерывна в точке $y_{0}$. Тогда в некоторой окрестности точки $x_{0}$ определена сложная функция. $\Phi (x)=f \big( \varphi _{1}(x),…,\varphi _{n}(x) \big) $ причем функция $\Phi(x)$ непрерывна в точке $x_{0}$.
Воспользуемся доказательством в случае одной переменной.

Теорема о непрерывности сложной функций

Пусть функция $\varphi (t) $ непрерывна в точке $t_{0}$ и функция $f(x)$ непрерывна в точке $x_{0}=\varphi(t_{0})$. Тогда функция $f(\varphi(t))$ непрерывна в точке $t_{0}$.

Доказательство:

Для доказательства этой теоремы воспользуемся формальным преобразованием двух строчек кванторов. Имеем:
$f(x)$ непрерывна в $x_{0}$ $\forall \varepsilon > 0 \;, \quad \exists \delta \; \quad \forall x \quad \left | x-x_{0} \right |< \delta $  $\left | f(x)-f(x_{0}) \right | <\varepsilon $ $ \quad \psi (e)$ непрерывна в $t_{0}$ $\forall \delta >0 \; \quad \exists \eta \; \quad \forall t \quad $ $\left | t-t_{0} \right | < \eta \; \quad \left | \varphi (t)-\varphi(t_{0}) \right | < \delta$ Выписывая  кванторы, получим, что:
$$\forall \varepsilon >0 \; \quad \exists \eta \; \quad \forall t \quad \left | t-t_{0}\right | < \eta \quad \left | f\Big( \varphi (t) \Big)-f\Big((\varphi t_{0})\Big) \right | < \varepsilon $$ что и говорит о том, что $f\big(\varphi (t)\big)$ непрерывна в точке $t_{0}$.

Источники:

  1. Тер-Крикоров А.М. и Шабунин М.И. «Курс математического анализа» стр. 237-238
  2. Конспект по математическому анализу Лысенко З.М.

Непрерывная функция

Тест на тему «непрерывные функции»

Повторный предел

Повторные предельные значения. Для функции [latex] u=f(x_{1},x_{2},…,x_{n})[/latex] нескольких переменных можно определить понятие предельного значения по одной из переменных [latex] x=x_{k} [/latex]  при фиксированных значениях остальных переменных. В связи с этим возникает понятие повторного предельного значения. Уясним это понятие на примере функции [latex] u=f(x,y)[/latex] двух переменных x и у. Пусть функция  [latex] u=f(x,y)[/latex] задана в некоторой прямоугольной окрестности  [latex] \left | x-x_{0} \right |<d_{1} [/latex] ,  [latex] \left | y-y_{0} \right | <d_{2} [/latex] точки [latex] M_{0}(x_{0},y_{0})[/latex] , за исключением, быть может, самой точки [latex] M_{0} [/latex] . Пусть для каждого фиксированного y, удовлетворяющего условию [latex] 0<\left | y-y_{0} \right | <d_{2}[/latex] существует предельное значение функции [latex] u=f(x,y)[/latex] одной переменной [latex]x[/latex] в точке [latex] x=x_{0} [/latex]

[latex]\lim\limits_{x\rightarrow x_{0}} f(x,y)=\varphi (y) [/latex] 

и пусть, кроме того, существует предельное значение [latex]b[/latex] функции  [latex] \varphi [/latex](y) в точке [latex] y=y_{0} [/latex]:

[latex]\lim\limits_{y\rightarrow y_{0}}\varphi(y) =b[/latex]

В этом случае говорят, что существует повторное предельное значение [latex]b[/latex] для функции  [latex] u=f(x,y)[/latex] в точке  [latex] M_{0} [/latex], которое обозначается следующим образом:

[latex] \lim\limits_{y\rightarrow y_{0}}[/latex] [latex]\lim\limits_{x\rightarrow x_{0}} f(x,y) =b[/latex]

Теорема:

Пусть функция [latex] u=f(x,y)[/latex] определена в некоторой прямоугольной окрестности  [latex] \left | x-x_{0} \right |<d_{1} [/latex] ,  [latex] \left | y-y_{0} \right | <d_{2} [/latex] точки [latex] M_{0}(x_{0},y_{0})[/latex] и имеет в этой точке предельное значение [latex]b[/latex]. Пусть, кроме того, для любого фиксированного [latex]x[/latex], [latex] 0<\left | x-x_{0} \right | <d_{1}[/latex], существует предельное значение [latex] \psi =\lim\limits_{y\rightarrow y_{0}}f(x,y)[/latex] и для любого фиксированного y, [latex] 0<\left | y-y_{0} \right | <d_{2}[/latex], существует предельное значение  [latex]\phi (y)=\lim\limits_{x\rightarrow x_{0}} [/latex]. Тогда повторные предельные значения [latex] \lim\limits_{x\rightarrow x_{0}}[/latex] [latex]\lim\limits_{y\rightarrow y_{0}} [/latex] и [latex] \lim\limits_{y\rightarrow y_{0}}[/latex] [latex]\lim\limits_{x\rightarrow x_{0}} f(x,y)[/latex] существуют и равны [latex]b[/latex].

 

Пример решения:

Вычислить повторный предел функций [latex]f(x,y)=\frac{x-y+x^2+y^2}{x+y}[/latex]

Спойлер

[latex] \lim\limits_{x\to 0}[/latex][latex]\lim\limits_{y\to 0}f(x,y)=[/latex][latex]\lim\limits_{x\to 0}( \lim\limits_{y\to 0}\frac{x-y+x^2+y^2}{x+y})[/latex][latex]=\lim\limits_{x\to 0}\frac{x+x^2}{x}=\lim\limits_{x\to 0}(1+x)=1[/latex]

[latex] \lim\limits_{y\to 0}[/latex][latex]\lim\limits_{x\to 0}f(x,y)=[/latex][latex]\lim\limits_{y\to 0}( \lim\limits_{x\to 0}\frac{x-y+x^2+y^2}{x+y})=[/latex][latex]\lim\limits_{y\to 0}\frac{-y+y^2}{y}=[/latex][latex]\lim\limits_{y\to 0}(-1+y)=[/latex][latex]-1[/latex]

[свернуть]

Литература:

Бесконечные пределы

Определение

Пусть задана функция нескольких переменных [latex]A\subset \mathbb{R}^n \rightarrow \mathbb{R} [/latex] и a —предельная точка множества [latex]A[/latex]. Если для любого числа [latex]M>0[/latex] существует такое число [latex]\delta [/latex], что при [latex]x\in A\cap U(a,\delta )[/latex] выполняется неравенство [latex]f(x)> M ( \left | f(x) \right | > M)[/latex], то говорят, что функция [latex]f(x)[/latex] стремится к + [latex]\infty[/latex] при, [latex]x\underset{A}{\rightarrow}a[/latex] и пишут:
[latex]\lim\limits_{x\to a}=+\infty[/latex] [latex](\lim\limits_{x\to a}=-\infty[/latex] или [latex]\lim\limits_{x\to a} =\infty )[/latex]
Во всех трех случаях функцию [latex]f(x)[/latex] называют бесконечно большой при [latex]x\underset{A}{\rightarrow}a[/latex].

Пример

Функция [latex]f(x, y) = \frac{1}{x^2+y^2}[/latex] является бесконечно большой при [latex](x, y) \rightarrow (0, 0)[/latex] Функция [latex]g(x, y) = \frac{x}{x^2+y^2}[/latex] стремится к [latex]\infty[/latex] при [latex](x, y)\underset{A}{\rightarrow} (0, 0)[/latex], если [latex]A[/latex] — сектор, заключенный между прямыми [latex]y = x[/latex] и [latex]y = {-x}[/latex] и расположенный в правой полуплоскости [latex]x > 0[/latex]. В самом деле, в этом секторе [latex]\left | y \right | < \left | x \right |[/latex] и поэтому:
[latex]\frac{x}{x^2+y^2}> \frac{x}{2x^2} = \frac{1}{2x}[/latex]
Функция [latex]g(x, y)[/latex] стремится к [latex]- \infty[/latex] при [latex](x, y)\underset{A}{\rightarrow} (0, 0)[/latex], если [latex]A[/latex] — сектор, заключенный между прямыми [latex]y = x[/latex] и [latex]y = {-x}[/latex] и расположенный в левой полуплоскости x < 0, поскольку в этом секторе [latex]\left | y \right | < \left | x \right |[/latex] и поэтому:
[latex]\frac{x}{x^2+y^2}< \frac{x}{2x^2} = \frac{1}{2x}[/latex]
Если [latex]A = {(x, y):x = 0, y \in R}[/latex]— ось ординат, то [latex]g(x, y) = 0[/latex] на [latex]A[/latex] и функция [latex]g(x, y)[/latex] является бесконечно малой при [latex](x, y)\underset{A}{\rightarrow} (0, 0)[/latex].

Литература:

Арифметические свойства непрерывных функций

Теорема 1

Пусть даны функции $f,g$ :$E \mapsto R^{m} $, $E \subset \mathbb{R}^n $. Если $ f, g$ непрерывны в точке $x_{0}$, то в этой точке непрерывны и функций $ f+g$ , $ f\cdot g$. Если $f,g$ — действительные функций и $ g(x)\neq 0$ на $E$, то $\Large \frac{f}{g}$ непрерывна в точке $ x_{0}.$

Доказательство:
Действительно, если $ x_{0}$ — изолированная точка в этой точке непрерывна каждая функция. Если же $ x_{0}$ — предельная точка множества  $ E$, то для доказательства этой теоремы достаточно применять соответствующую теорему о арифметических свойствах пределов функций.

Теорема 2 (формулировка)

Пусть $ f $ : $E \rightarrow \mathbb{R}^m$ и $ g $: $N \rightarrow {R}^k$,  $N \subset \mathbb{R}^m $, причем $f(E) \subset N$. Если  $f$ непрерывна в точке $x_{0}$ $\in E$ , в функция $g$ непрерывна в точке $y_{0}= f(x_{0})$ $\in N$, то композиция $h= (g \circ f)$ непрерывна в точке $x_{0} $.

Пример

Пусть $f(x)=$ $\left | x \right |$.
Тогда из неравенства:
$\left | f(x)-f(x_0) \right |=\left | \left | x \right |- \left | x_{0} \right |\right | \leq \left | x-x_{0} \right |$ сразу следует непрерывность функций $f$.

Непрерывная функция

Тест на тему «непрерывные функции»

Таблица лучших: Непрерывная функция

максимум из 6 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Локальные свойства непрерывных функций

Локальными называют такие свойства функций, которые определяются поведением функции в сколь угодно малой окрестности точки области определения.

Теорема (формулировка)

Пусть $f: E \rightarrow \mathbb{R}$ — функция, непрерывная в точке $x_{0} \in R$ тогда справедливы следующие утверждения:

  • Функция $f$ ограничена в некоторой окрестности $U_{E} (x_{0})$.
  •  Если $f(x_{0}) \neq 0$, то в некоторой окрестности $U_{E} (x_{0})$ точки $x_{0}$ функция $f(x)>0$
    ( или $f(x)<0$ ) вместе с $f(x_{0})$.
  •  Если функция $g: U_{E} (x_{0})$ $ \rightarrow R$ также непрерывна в точке $x_{0}$, то следующие функции непрерывны в точке $x_{0}$:
      • $f+g$
      • $f \cdot g $
      • $\Large \frac{f}{g}$

Если функция $g: Y$ $\rightarrow R$ непрерывна в точке $y_{0} \in Y$, а функция $f$ такова, что $f: E$ $\rightarrow R$, $f(x_{0})=y_{0}$, $f(E) \in Y$ и $f$ непрерывна в точке  $x_{0}$, то композиция $g\circ f$ непрерывна в точке $x_{0}$.

Пример 1

Алгебраический многочлен $P_{n}(x)=a_{0}x^n+a_{1}x^{n-1}+…+a_{n}$ является непрерывной функцией для $x \in R$. Это следует из теоремы 1 и непрерывности функции $y=x$ и $y=k$.

Пример 2

Рациональная функция $\large R(x)=\frac{P_{n}(x)}{Q_{m}(x)}$ непрерывна всюду, кроме точек, в которых $Q_{m}(x)=0$.

Источники:

  1. А.М. Кытманов, Е.К. Лейнартас, О.Н. Черепанова «Математический анализ» / Сиб. федерал. ун-т. — Красноярск, 2010. — 50-53 стр. 
  2. Конспект по математическому анализу Лысенко З.М.

Непрерывная функция

Тест на тему «непрерывные функции»

Таблица лучших: Непрерывная функция

максимум из 6 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных