Свойства определителей

Рассмотрим свойства определителей, на основе которых можно существенно облегчить их вычисление:

Свойство $1$

Определитель транспонированной матрицы равен определителю начальной матрицы: $\det A = \det A^{T}$.

Доказательство

Действительно, брать произведения элементов по одному из каждой строки и по одному из каждого столбца исходной матрицы — то же самое, что делать это по отношению к транспонированной матрице. Далее, номера строк для исходной матрицы — это номера столбцов для транспонированной, а номера столбцов исходной матрицы — суть номера строк транспонированной. Поэтому каждое слагаемое входит в состав определителя исходной матрицы и определителя транспонированной с одним и тем же множителем.

[свернуть]

Свойство $2$

Транспозиция (замена) двух строк (столбцов) матрицы — меняет знак определителя $$\det A = \begin{vmatrix} a_{11} & … & a_{1n} \\ .&.&. \\ a_{i1} & … & a_{in} \\ a_{j1} & … & a_{jn} \\ .&.&. \\ a_{n1} & … & a_{nn} \end{vmatrix} = -\begin{vmatrix} a_{11} & … & a_{1n} \\ .&.&. \\ a_{j1} & … & a_{jn}\\ a_{i1} & … & a_{in} \\ .&.&. \\ a_{n1} & … & a_{nn} \end{vmatrix}.$$

Доказательство

Действительно, по Теореме №$2$ о транспозиции — транспозиция меняет четность элементов перестановки. При перестановке двух строк, каждый элемент меняет знак, значит и сам определитель меняет знак.

[свернуть]

Свойство $3$

Умножение всей строки (столбца) на некий элемент $\alpha$ является аналогичным умножению всего определителя на этот элемент. Определитель с нулевой строкой (столбцом) равен нулю: $$ \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1 j} & \cdots & a_{1 n} \\a_{21} & a_{22} & \cdots & a_{2 j} & \cdots & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\\alpha a_{i 1} & \alpha a_{i 2} & \cdots & \alpha a_{i j} & \cdots & \alpha a_{i n} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\a_{n 1} & a_{n 2} & \cdots & a_{n j} & \cdots & a_{n n}\end{vmatrix}= \alpha \cdot\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1 j} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 j} & \cdots & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & \cdots & a_{i j} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\a_{n 1} & a_{n 2} & \cdots & a_{n j} & \cdots & a_{n n}\end{vmatrix}.$$

Доказательство

Пусть на $\alpha$ умножаются все элементы $i$-той строки. Каждый член определителя содержит $1$ элемент из этой строки, поэтому всякий член определителя приобретает общий множитель $\alpha$, а это значит что и сам определитель умножается на $\alpha$.

[свернуть]

Свойство $4$

Если все элементы $i$-той строки (столбца) матрицы определителя разбить в сумму двух строк: $$a_{i j}=b_{j}+c_{j}, \quad j=1, \ldots, n$$ то и саму матрицу можно будет разбить на две, у которых все строки (столбцы) кроме $i$-той — такие же как у первой матрицы, а $i$-тая строка состоит из $b_{j}$ в первой матрице определителя, и из элементов $c_{j}$ во втором.

Доказательство

Действительно, любой член матрицы определителя можно представить в виде произведения: $$\begin{aligned}a_{1 \alpha_{1}} a_{2 \alpha_{2}} \ldots a_{i \alpha_{i}} \ldots a_{n \alpha_{n}}&=a_{1 \alpha_{1}} a_{2 \alpha_{2}} \ldots\left(b_{\alpha_{i}}+c_{\alpha_{i}}\right)\ldots a_{n \alpha_{n}}=\\&=a_{1 \alpha_{1}} a_{2 \alpha_{2}} \ldots b_{\alpha_{i}} \ldots a_{n \alpha_{n}}+a_{1\alpha_{1}} a_{2 \alpha_{2}} \ldots c_{\alpha_{i}} \ldots a_{n\alpha_{n}}.\end{aligned}.$$ Объединяя первые слагаемые этого выражения, мы получим матрицу определителя, где в первой матрице в $i$-той строке вместо элементов $a_{i j}$ стоят элементы$b_{j} .$ Соответственно вторые слагаемые составляют матрицу определителя, с элементами $c_{j}$ таким образом: $$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1 n} \\a_{1}+c_{1} & b_{2}+c_{2} & \dots & b_{n}+c_{n} \\a_{n 1} & a_{n 2} & \dots & a_{n n}\end{vmatrix}=$$$$=\begin{vmatrix}a_{11} & a_{12} & \dots a_{1 n} \\b_{1} & b_{2} & \dots & b_{n} \\a_{n 1} & a_{n 2} & \dots & a_{nn}\end{vmatrix}+\begin{vmatrix}a_{11} & a_{12} & \dots & a_{1 n} \\c_{1} & c_{2} &\dots & c_{n} \\a_{n 1} & a_{n 2} & \dots & a_{n n}\end{vmatrix}.$$

[свернуть]

Свойство $5$

Определитель верхней (нижней) треугольной матрицы есть произведение элементов ее главной диагонали $$\begin{vmatrix}a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\0 & a_{22} & a_{23} & \cdots & a_{2 n} \\0 & 0 & a_{33} & \cdots & a_{3 n} \\\cdots & \cdots & \cdots & \cdots & \cdots \\0 & 0 & 0 & \cdots & a_{n n}\end{vmatrix}=a_{11} \cdot a_{22} \cdot a_{33} \cdot \ldots \cdot a_{n n}.$$

Доказательство

Действительно, так как определитель есть произведение одного из элементов строки (столбца) его матрицы, то у первого столбца единственным будет $a_{11}$, во втором столбце — $a_{22}$ т.к. у первой строки $a_{11}$, третьим элементом — только $a_{33}$, далее аналогично.

[свернуть]

Свойство $6$

Если в матрице определителя одна строка будет результатом ее сложения с другой строкой и умножения на число, определитель не изменится . $$\begin{vmatrix}a_{11}& \cdots & \cdots & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \\ a_{i 1} & a_{i 2} & a_{i 3} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{j 1} & a_{j 2} & a_{j 3} & \cdots & a_{j n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n1}& \cdots & \cdots & \cdots & a_{nn}\end{vmatrix}=$$$$=\begin{vmatrix}a_{11}& \cdots & \cdots & \cdots & a_{1n} \\\cdots & \cdots & \cdots & \cdots & \cdots \\ a_{i 1} & a_{i 2} & a_{i 3} & \cdots & a_{i n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{k 1}+k a_{i 1} & a_{k 2}+k a_{i 2} & a_{k 3}+k a_{i 3} & \cdots & a_{k n}+k a_{i n} \\ \ldots & \ldots & \ldots & \ldots & \ldots\\ a_{n1}& \cdots & \cdots & \cdots & a_{nn}\end{vmatrix}\cdot$$

Доказательство

Этот определитель можно представить в виде суммы определителей (по $4$ свойству), в итоге получится $2$ определителя, один из которых будет равен нулю, из-за равенства двух строк, а второй будет исходным.

[свернуть]

Пример $1$

Вычислить определитель $$\det A=\begin{vmatrix}6 & 1 & 6 \\12 & 2 & 12 \\9 & 2 & 5\end{vmatrix}.$$

Решение

Выносим $2$ из второй строки определителя: $$\det A = \begin{vmatrix}6 & 1 & 6 \\12 & 2 & 12 \\9 & 2 & 5\end{vmatrix} = 2\begin{vmatrix}6 & 1 & 6 \\6 & 1 & 6 \\9 & 2 & 5\end{vmatrix} = 0.$$ Видим что у определителя две равных строки соответственно определитель равен нулю

[свернуть]

Пример $2$

Вычислить определитель$$\det A =\begin{vmatrix}12& 5 & 1 & 5 & 19 \\0 & 8 & 2 & 12 & 9 \\0 & 0 & 4 & 27 & 41 \\0 & 0 & 0 & 5 & 13 \\ 0 & 0 & 0 & 0 & 7\end{vmatrix}$$

Решение

По пятому свойству, определитель треугольной матрицы равен произведению элементов главной диагонали: $$\det A=\begin{vmatrix}12& 5 & 1 & 5 & 19 \\0 & 8 & 2 & 12 & 9 \\0 & 0 & 4 & 27 & 41 \\0 & 0 & 0 & 5 & 13 \\ 0 & 0 & 0 & 0 & 7\end{vmatrix}=12\cdot8\cdot4\cdot5\cdot7=13440.$$

[свернуть]

Пример $3$

Проверьте, будет ли определитель транспонированной матрицы равен исходной:$$\begin{Vmatrix}3 & 3 & -1 \\4 & 1 & 3 \\1 & -2 & -2\end{Vmatrix}.$$

Решение

$$\begin{vmatrix}3 & 3 & -1 \\4 & 1 & 3 \\1 & -2 & -2 \end{vmatrix}=$$$$=(-6)-(-18)-(-24) + 8 + 9 — (-1)=54$$$$\begin{vmatrix}3 & 4 & 1 \\3 & 1 & -2 \\-1 & 3 & -2 \end{vmatrix}=(-6)-(-18)-(-24)+8+9- (-1)=54.$$ Действительно, определитель транспонированной матрицы равен исходной

[свернуть]

Пример 4

Вычислите определитель треугольной матрицы: $$\begin{Vmatrix}3 & 0 & 0 \\4 & 1 & 0 \\1 & -2 & -2 \end{Vmatrix}.$$

Решение

Воспользуемся пятым свойством: $$\begin{vmatrix}3 & 0 & 0 \\4 & 1 & 0 \\1 & -2 & -2 \end{vmatrix} = 3\cdot1\cdot-2 = -6$$

Пример $5$

Вычислите определитель: $$\begin{vmatrix}6 & 5 & 9 & 3 \\2 & 1 & 0 & 4 \\0 & 0 & 0 & 0 \\ 1 & 12 & 8 & 2 \end{vmatrix}.$$

Решение
[свернуть]

По $3$ свойству, матрица определителя, содержащая нулевую строку равна нулю. Ответ $\det A=0$

[свернуть]

Смотрите также

  1. Конспект Белозерова Г.С. по алгебре — Глава IV.
  2. Курош А.Г. Курс высшей алгебры М.: Наука, 1968, издание 9, глава 1, §4, «Определители n-го порядка»
  3. В.Воеводин Линейная алгебра М.: Наука, 1980, глава 7, §62, «Матрицы и определители» — стр 201

Свойства Определителей

Проверьте себя на знание материала «Свойства Определителей»

Матрицы. Виды матриц. Равенство матриц. Операции над матрицами

Матрицы. Виды матриц

Определение. Прямоугольная таблица, на пересечении строк и столбцов которой находятся элементы поля, называется матрицей.

Нагляднее всего использование подобных таблиц демонстрируется в решении систем линейных алгебраических уравнений (СЛАУ), поскольку решение зависит именно от матриц системы. Например, исходная система имеет вид:
$$ \left.\begin{matrix}a_{11}x_{1}+&\ldots& +a_{1n}x_{n} & = &b_{1}\\ \cdot & \cdot &\cdot & \cdot &\cdot\\a_{m1}x_{1}+ &\ldots& +a_{mn}x_{n} & = & b_{m}\end{matrix}\right\}.$$ Как видим, в системе $m$ — количество уравнений, а $n$ — количество неизвестных. Матрицы этой системы выглядят так: $$A=\left(\begin{matrix}a_{11} & \cdots & a_{1n} \\\cdot & \cdot & \cdot\\ a_{m1} & \cdots & a_{mn} \end{matrix}\right),\,B=\left(\begin{matrix}b_{1} \\\vdots \\ b_{m} \end{matrix}\right).$$
Матрица системы вида:
$$A\mid B=\left(\left.\begin{matrix}a_{11} & \cdots & a_{1n} \\\cdot & \cdot & \cdot \\a_{m1} & \cdots &a_{mn}\end{matrix}\right|\begin{matrix}b_{1}\\ \cdot \\ b_{m}\end{matrix}\right),$$
считается расширенной матрицей системы.

Определение. Элементы поля расположенные на пересечении строк и столбцов матрицы называются ее элементами.

Что касается индексации элементов матрицы, сперва записывается номер строки, в которой стоит элемент, а следом номер столбца. Нумерация строк и столбцов матрицы происходит вполне логичным образом: строки нумеруются сверху вниз, а столбцы — слева направо.

Определение. Количество строк и столбцов матрицы называют размерами матрицы.

Множество матриц над полем $P$ размеров $m\times n$ обозначим $M_{m\times n}\left ( P\right ),$ а в случае $m=n$ — $M_{n}\left ( P \right ).$ Традиционно матрицы обозначают большими латинскими буквами. Если надо указать, из каких элементов состоит матрица, то пишут $A=\left (a_{ij}\right )\in M_{m\times n}\left ( P \right ).$

Определение. Матрица, у которой одинаковое количество строк и столбцов, называется квадратной. Размер такой матрицы называют порядком.

Пример$$A=\left(\begin{array}{rrr}2 & -5 & 4 \\3 & 1 & 0 \\ 12 & 7 & 0 \end{array}\right),$$ $A$ — квадратная матрица третьего порядка.

Определение. Совокупность элементов квадратной матрицы, расположенных вдоль диагонали, идущей из левого верхнего угла в правый нижний, называется главной диагональю матрицы, а вторая диагональ — побочной (см. рис.1).

Рис. 1

Определение. Матрица $A=\left(
a_{ij}\right )\in M_{n}\left ( P \right )$ называется верхней (нижней) треугольной, если $a_{ij}=0$ для $i>j$ $(i<j).$ Иными словами, верхняя (нижняя) треугольная матрица — это матрица, у которой все элементы, расположенные ниже (выше) главной диагонали, равны нулю.

Пример$$A=\left(\begin{matrix}1 & 8 & 1 \\0 & 4 & 7 \\ 0 & 0 & 2 \end{matrix}\right),\;B=\left(\begin{matrix}1 & 0 & 0 \\8 & 4 & 0 \\ 1 & 7 & 2 \end{matrix}\right),$$

$A$ — верхняя треугольная матрица третьего порядка, $B$ — нижняя треугольная матрица третьего порядка.

Определение. Если квадратная матрица является как нижней, так и верхней треугольной, то она называется диагональной. Иными словами, диагональная матрица — это матрица, у которой все элементы вне главной диагонали равны нулю.

Пример$$A=\left(\begin{matrix}1 & 0 & 0 \\0 & 2 & 0 \\ 0 & 0 & 3 \end{matrix}\right),$$

$A$ — диагональная матрица третьего порядка.

Определение. Диагональная матрица, у которой все элементы главной диагонали равны между собой, называется скалярной.

Пример$$A=\left(\begin{matrix}8 & 0 & 0 \\0 & 8 & 0 \\ 0 & 0 & 8 \end{matrix}\right),$$

$A$ — скалярная матрица третьего порядка.

Определение. Скалярная матрица, у которой диагональные элементы равны единице поля, называется единичной.

Пример$$A=\left(\begin{matrix}1 & 0 & 0 \\0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}\right),$$

$A$ — единичная матрица третьего порядка.

Определение. Матрица, все элементы которой равны нулю, называется нулевой.

Пример$$A=\left(\begin{matrix}0 & 0 & 0 \\0 & 0 & 0 \\ 0 & 0 & 0 \end{matrix}\right),$$

$A$ — нулевая матрица третьего порядка.

Определение. Матрица вида $$A=\left(\begin{matrix}A_{1}&& 0 \\ &\ddots & \\ 0 & &A_{s} \end{matrix}\right),$$ где $A_{1}…A_{s}$ — квадратные матрицы (блоки) произвольных порядков, расположенные таким образом, что их главные диагонали составляют главную диагональ матрицы $A,$ а остальные элементы, не входящие в блоки равны нулю, называется клеточнодиагональной или квазидиагональной.

Пример$$A=\left(\begin{matrix}2&5&0&0&0&0\\6&3&0&0&0&0\\0&0&1&4&5&0\\0&0&2&2&3&0\\0&0&9&1&7&0\\0&0&0&0&0&4\end{matrix}\right),$$

$A$ — клеточнодиагональная (квазидиагональная) матрица шестого порядка.

Равенство матриц. Операции над матрицами

Равенство матриц

Определение. Две матрицы одинаковых размеров называются равными, если совпадают их элементы с одинаковыми индексами.

Замечание. Для матриц $A=\left (a_{ij}\right ),$ $B=\left (b_{ij}\right )\in M_{m\times n}\left ( P \right )$ равенство $A=B,$ т.е. $\left (a_{ij}\right )=\left (b_{ij}\right )$ означает $a_{ij}=b_{ij}$ для всех $i=\overline{1,\,m}$ и $j=\overline{1,\,n}.$

Пример$$A=\left(\begin{matrix}2&3\\0&1\end{matrix}\right),\;B=\left(\begin{matrix}2&3\\0&1\end{matrix}\right).$$ Порядок матрицы $A$ совпадает с порядком матрицы $B,$ и элементы матриц с соотвествующими индексами равны, поэтому $A=B$.

Сложение матриц

Определение. Пусть заданы матрицы $A=\left(a_{ij}\right ),$ $B=\left(b_{ij}\right )\in M_{m\times n}\left ( P \right ).$ Их суммой называется матрица $C=\left (c_{ij}
\right ) = A+B=\left (a_{ij}\right )+\left (b_{ij}\right )=\left(a_{ij}+b_{ij}\right )\in M_{m\times n}\left ( P \right ).$

Таким образом, можно складывать матрицы одинаковых размеров. При этом получается матрица тех же размеров.

Пример$$A=\left(\begin{array}{rrr}5&-8\\2&0\\1&4\end{array}\right),\,B=\left(\begin{array}{rrr}1&9\\4&3\\-1&-5\end{array}\right),\;A+B-?$$

Решение

$$A+B=\left(\begin{array}{rrr}5&-8\\2&0\\1&4\end{array}\right)+\left(\begin{array}{rrr}1&9\\4&3\\-1&-5\end{array}\right)=$$ $$=\left(\begin{array}{rrr}5+1&-8+9\\2+4&0+3\\1-1&4-5\end{array}\right)=\left(\begin{array}{rrr}6&1\\6&3\\0&-1\end{array}\right).$$

[свернуть]

Умножение на элемент поля

Определение. Пусть задана матрица $A=\left (a_{ij}
\right )\in M_{m\times n}\left ( P \right )$ и элемент поля $\lambda \in P.$ Тогда произведением матрицы $A$ на элемент $\lambda$ называется матрица $$B=\left (b_{ij}\right )=\lambda \cdot A=\lambda \cdot \left (a_{ij}\right )=\left (\lambda \cdot a_{ij}\right )\in M_{m\times n}\left (P \right ).$$

Умножая матрицу произвольных размеров на элемент поля, в результате получаем матрицу тех же размеров, каждый элемент которой равен произведению соответствующего элемента исходной матрицы на элемент поля.

Пример$$A=\left(\begin{array}{rrr}0 & -1 & 8 \\4 & 1/2 & 2 \\ -6 & 0 & 3 \end{array}\right),\;-\frac{1}{2}\cdot A-?$$

Решение

$$-\frac{1}{2}\cdot A=-\frac{1}{2}\cdot \left(\begin{array}{rrr}0 & -1 & 8 \\4 & 1/2 & 2 \\ -6 & 0 & 3 \end{array}\right)=$$ $$=\left(\begin{array}{rrr}-1/2\cdot 0 & -1/2\cdot \left (-1\right ) & -1/2\cdot 8 \\-1/2\cdot 4 & -1/2\cdot 1/2 & -1/2\cdot 2 \\ -1/2\cdot \left (-6\right ) & -1/2\cdot 0 & -1/2\cdot 3 \end{array}\right)=$$ $$=\left(\begin{array}{rrr}0 & 1/2 & -4 \\-2 & -1/4 & -1 \\ 3 & 0 & -3/2 \end{array}\right).$$

[свернуть]

Отметим простейшие свойства операции умножения на элемент поля. Именно:

  1. $1\cdot A=A,\;$ $\forall A\in M_{m\times n}\left ( P \right );$
  2. $\lambda \cdot \left ( \mu \cdot A \right )=\left ( \lambda \mu \right )\cdot A=\left ( \mu \lambda \right ) \cdot A,\;$ $\forall \lambda ,\mu \in P,$ $\forall A\in M_{m\times n}\left ( P\right );$
  3. $\left ( \lambda +\mu \right )\cdot A=\lambda \cdot A+\mu \cdot A,$ $\forall \lambda ,\mu \in P,\;$ $\forall A\in M_{m\times n}\left ( P\right );$
  4. $\lambda \cdot \left ( A+B \right )=\lambda \cdot A+\lambda \cdot B,$ $\forall \lambda \in P,\,$ $\forall A,B\in M_{m\times n}\left ( P \right ).$

Умножение матриц

Определение. Пусть заданы матрицы $A=\left (a_{ij}\right )\in M_{m\times n}\left ( P \right ),$ $B=\left (b_{ij}\right )\in M_{n\times s}\left ( P \right ).$ Произведением матрицы $А$ на матрицу $В$ называется матрица $C=A\cdot B,\,$ $C=\left (c_{ij}\right )\in M_{m\times s}\left ( P \right )$ такая, что $c_{ij}=\sum\limits_{k=1}^{n}a_{ik}\cdot b_{kj}$ для всех $i=\overline{1,\,m}$ и $j=\overline{1,\,s}.$

Из операций над матрицами умножение считается самой трудной. Рассмотрим эту операцию подробнее. На рис.2 используем вторую строку первой матрицы и третий столбец второй матрицы. $$1\cdot 2+2\cdot 2+0\cdot 5=6.$$ Получившийся элемент стоит в строке и столбце с теми же номерами (вторая строка, третий столбец).

Рис. 2

Аналогично находятся другие элементы. На рис.3 используем первую строку матрицы слева и четвертый столбец матрицы справа.$$2\cdot 3+3\cdot 2+4\cdot 1=16.$$ Как видим, получившийся элемент стоит в строке и столбце с соответствующими номерами.

Рис. 3

Пример$$A=\left(\begin{matrix}1 & 4 & 7 \\2 & 0 & 2\end{matrix}\right),\;B=\left(\begin{matrix}6 & 1 & 1\\7 & 3 & 2\\1&5&4\end{matrix}\right),\;A\cdot B-?$$

Решение

Количество стoлбцов матрицы $A$ совпадает с количеством строк матрицы $B$, поэтому существует произведение $A\cdot B.$

$$A\cdot B=\left(\begin{matrix}1 & 4 & 7 \\2 & 0 & 2\end{matrix}\right)\cdot \left(\begin{matrix}6 & 1 & 1\\7 & 3 & 2\\1&5&4\end{matrix}\right)=$$ $$=\left(\begin{matrix}1\cdot 6+4\cdot 7+7\cdot 1 & 1\cdot 1+4\cdot 3+7\cdot 5 & 1\cdot 1+4\cdot 2+ 7\cdot 4\\2\cdot 6+0\cdot 7+2\cdot 1 & 2\cdot 1+0\cdot 3+2\cdot 5& 2\cdot 1+0\cdot 2+2\cdot 4\end{matrix}\right)=$$ $$=\left(\begin{matrix}41 & 48 & 37\\14 & 12 & 10\end{matrix}\right).$$

[свернуть]

Легко заметить, что не любые матрицы можно перемножить. Требуется, чтобы число столбцов матрицы слева совпадало с количеством строк матрицы справа. Кроме того, если существуют оба произведения $A\cdot B$ и $B\cdot A,$ то, произведение $A\cdot B,$ вообще говоря, не равно произведению $B\cdot A,$ то есть операция умножения матриц не является коммутативной. Это объясняется несимметричностью использования строк и столбцов левого и правого сомножителей. Однако умножение матриц обладает свойством ассоциативности.

Пример

$$A=\left(\begin{matrix}3 & 6 \\4 & 10\\2&8\end{matrix}\right),\;B=\left(\begin{matrix}1 & 5&3\\7 &2&0\end{matrix}\right).$$ $$A\cdot B=\left(\begin{matrix}3 & 6 \\4 & 10\\2&8\end{matrix}\right)\cdot \left(\begin{matrix}1 & 5&3\\7 &2&0\end{matrix}\right)=\left(\begin{matrix}45 & 27&9 \\74 & 40&12\\58&26&6\end{matrix}\right);$$ $$B\cdot A=\left(\begin{matrix}1 & 5&3\\7 &2&0\end{matrix}\right)\cdot \left(\begin{matrix}3 & 6 \\4 & 10\\2&8\end{matrix}\right)=\left(\begin{matrix}29 & 80 \\29 & 62\end{matrix}\right).$$ $$\left(\begin{matrix}45 & 27&9 \\74 & 40&12\\58&26&6\end{matrix}\right)\neq \left(\begin{matrix}29 & 80 \\29 & 62\end{matrix}\right)\Rightarrow A\cdot B\neq B\cdot A.$$

[свернуть]

Примеры задач

Пример 1. Даны матрицы $A$, $B$ и $C$. Найти матрицу $D=-2\cdot A\cdot B\cdot E+C,\;$ $E$ — единичная матрица соответствующего порядка. $$A=\left(\begin{matrix}-2 & -3 & -5 \\-1 & -2 & -8\\ -4& -6 & -1\end{matrix}\right),\;B=\left(\begin{matrix}2 & 1 & 10\\7 & 3 & 3\\1&5&4\end{matrix}\right),\;C=\left(\begin{matrix}21 & 42 & 4\\-6 & 12 & 9\\14&10&1\end{matrix}\right).$$

Решение

Первое действие — умножение элемента поля на матрицу $A.$$$-2\cdot A=-2\cdot \left(\begin{matrix}-2 & -3 & -5 \\-1 & -2 & -8\\ -4& -6 & -1\end{matrix}\right)=\left(\begin{matrix}4 & 6 & 10 \\2 & 4 & 16\\ 8& 12 & 2\end{matrix}\right).$$

Второе действие — умножение полученной матрицы на матрицу $B.$ $$\left(\begin{matrix}4 & 6 & 10 \\2 & 4 & 16\\ 8& 12 & 2\end{matrix}\right)\cdot B=\left(\begin{matrix}4 & 6 & 10 \\2 & 4 & 16\\ 8& 12 & 2\end{matrix}\right)\cdot \left(\begin{matrix}2 & 1 & 10\\7 & 3 & 3\\1&5&4\end{matrix}\right)=$$ $$=\left(\begin{matrix}60 & 72 & 98 \\48 & 94 & 96\\ 102& 54 & 124\end{matrix}\right).$$

Третье действие — умножение полученной матрицы на единичную матрцу соответствующего порядка. Логично, что реультат умножения на единичную матрицу будет равен исходой матрице. $$\left(\begin{matrix}60 & 72 & 98 \\48 & 94 & 96\\ 102& 54 & 124\end{matrix}\right)\cdot \left(\begin{matrix}1 & 0 & 0 \\0 & 1 & 0\\ 0& 0 & 1\end{matrix}\right)=\left(\begin{matrix}60 & 72 & 98 \\48 & 94 & 96\\ 102& 54 & 124\end{matrix}\right).$$

И последнее — складывание полученной матрицы и матрицы $C.$ $$\left(\begin{matrix}60 & 72 & 98 \\48 & 94 & 96\\ 102& 54 & 124\end{matrix}\right)+\left(\begin{matrix}21 & 42 & 4\\-6 & 12 & 9\\14&10&1\end{matrix}\right)=\left(\begin{matrix}81 & 114 & 102 \\42 & 106 & 105\\ 116& 64 & 125\end{matrix}\right).$$ $$D=\left(\begin{matrix}81 & 114 & 102 \\42 & 106 & 105\\ 116& 64 & 125\end{matrix}\right).$$

[свернуть]

Пример 2. Дана матрица $A$. Найти $A^{3},$ $$A=\left(\begin{matrix}2 & 3 & 7 \\1 & 1 & 13\\ 0& 4 & 8\end{matrix}\right).$$

Решение

По определению возведение числа в степень $n$ — умножение числа на себя $n$ раз. Возведение матриц в степень происходит похожим образом. То есть $A^{3}=A\cdot A^{2} = A\cdot A\cdot A.$

Найдем $A^{2}.$ $$A^{2}=A\cdot A=\left(\begin{matrix}2 & 3 & 7 \\1 & 1 & 13\\ 0& 4 & 8\end{matrix}\right)\cdot \left(\begin{matrix}2 & 3 & 7 \\1 & 1 & 13\\ 0& 4 & 8\end{matrix}\right)=\left(\begin{matrix}7 & 37 & 109 \\3 & 56 & 124\\ 4& 36 & 116\end{matrix}\right);$$

Теперь найдем $A^{3}.$ $$A^{3}=A\cdot A^{2}=\left(\begin{matrix}2 & 3 & 7 \\1 & 1 & 13\\ 0& 4 & 8\end{matrix}\right)\cdot \left(\begin{matrix}7 & 37 & 109 \\3 & 56 & 124\\ 4& 36 & 116\end{matrix}\right) =\left(\begin{matrix}51 & 494 & 1402 \\62 & 561 & 1741\\ 44& 512 & 1424\end{matrix}\right).$$

$$A^{3}=\left(\begin{matrix}51 & 494 & 1402 \\62 & 561 & 1741\\ 44& 512 & 1424\end{matrix}\right).$$

[свернуть]

Матрицы. Виды матриц. Равенство матриц. Операции над матрицами

Для закрепления материала предлагается тест:

Литература

  1. Белозеров Г.С. Конспект лекций по линейной алгебре.
  2. Воеводин В.В. Линейная алгебра. М.: Наука, 1980.-400 с., стр. 194-197
  3. Фадеев Д.К. Лекции по алгебре. М.: Наука, 1984.-416 с., стр. 72-80
  4. Проскуряков И.В. Сборник задач по линейной алгебре. М.: Наука, 1984.-384 с., стр. 112-115