Введём понятия абсолютно и условно сходящихся несобственных интегралов.
Пусть дан несобственный интеграл [latex]I=\int_{a}^{b}f(x)dx[/latex]:
- интеграл [latex]I[/latex] называется абсолютно сходящимся, если сходится [latex]\widetilde{I}=\int_{a}^{b}|f(x)|dx[/latex];
- интеграл [latex]I[/latex] называется условно сходящимся, если интеграл [latex]I[/latex] сходится, а [latex]\widetilde{I}[/latex] — расходится.
В случае абсолютной сходимости интеграла [latex]I[/latex] говорят, что функция [latex]f(x)[/latex] абсолютно интегрируема на полусегменте [latex]\left[a,b\right)[/latex].
Пусть [latex]f\in{R([a,\xi))}[/latex] для всех [latex]a<\xi<b[/latex]. Тогда из сходимости несобственного интеграла [latex]\widetilde{I}=\int_{a}^{b}|f(x)|dx[/latex] следует сходимость несобственного интеграла [latex]I=\int_{a}^{b}f(x)dx[/latex] и справедливо неравенство:
Т.к интеграл [latex]\widetilde{I}[/latex] сходится, то для него выполняется условие Коши:
Т.к. [latex]I[/latex] — несобственный интеграл, то подынтегральная функция [latex]f[/latex] интегрируема по Риману на сегменте [latex][\xi’,\xi»][/latex]. Из условия следует, что функция [latex]|f(x)|[/latex] интегрируема по Риману на этом же сегменте.
Т.к. функция интегрируема на каждом отрезке с концами [latex]\xi'[/latex] и [latex]\xi»[/latex], то выполняется неравенство:
Отсюда следует, что
Таким образом, функция [latex]f[/latex] удовлетворяет условию Коши и интеграл [latex]I[/latex] сходится.
Докажем исследуемое неравенство. Воспользуемся следующим неравенством:
Данное н-во справедливо при любом [latex]\xi\in[a,b)[/latex]. Т.к интегралы [latex]I[/latex] и [latex]\widetilde{I}[/latex] сходятся, то, переходя к пределу при [latex]\xi[/latex] стремящемся к [latex]b[/latex] справа, получим требуемое неравенство.
Если функция [latex]g(x)[/latex] абсолютно интегрируема на промежутке [latex]\left[a;b\right)[/latex], то несобственные интегралы [latex]I_{1}=\int_{a}^{b}f(x)dx[/latex] и [latex]I_{2}=\int_{a}^{b}\left(f(x)+g(x)\right)dx[/latex] сходятся или расходятся одновременно.
Пусть [latex]I=\int_{a}^{b}g(x)dx,\;\widetilde{I}=\int_{a}^{b}|g(x)|dx,\;\widetilde{I}_{1}=\int_{a}^{b}\left|f(x)\right|dx,\;\widetilde{I}_{2}=\int_{a}^{b}\left|f(x)+g(x)\right|dx.[/latex]
- Из неравенства [latex]\left|f+g\right|\leq\left|f\right|+\left|g\right|[/latex], критерия Коши и сходимости интегралов [latex]\widetilde{I}[/latex] и [latex]\widetilde{I}_{1}[/latex] следует сходимость интеграла [latex]\widetilde{I}_{2}[/latex].
- Пусть интеграл [latex]I_{1}[/latex] сходится, а [latex]\widetilde{I}_{1}[/latex] расходится. Тогда (из сходимости интегралов [latex]I_{1}[/latex] и [latex]I[/latex]) интеграл [latex]I_{2}[/latex] сходится, а [latex]\widetilde{I}_{2}[/latex] расходится. В противном случае из н-ва [latex]\left|f\right|\leq\left|f+g\right|+\left|g\right|[/latex] и сходимости [latex]\widetilde{I}[/latex] следовала бы сходимость [latex]\widetilde{I}_{1}[/latex]. Аналогично рассматривается ситуация с условной сходимостью интегралов [latex]I_{2}[/latex] и [latex]I_{1}[/latex].
- Из расходимости [latex]I_{1}[/latex] следует расходимость [latex]I_{2}[/latex]. Если бы это было не так, то из сходимости [latex]I[/latex] и равенства [latex]f=\left(f+g\right)-g[/latex] следовала бы сходимость [latex]I_{1}[/latex].
Ни на сходимость, ни на характер сходимости прибавление или вычитание под знаком интеграла абсолютно интегрируемой функции не влияет.
В качестве примера, исследуем интеграл на абсолютную и условную сходимость. Возьмём интеграл [latex]I=\int_{1}^{+\infty}\frac{\sin{x}}{x^\alpha}dx[/latex].
[latex]I=\int\limits_{1}^{+\infty}\frac{\sin{x}}{x^\alpha}dx[/latex]
Рассмотрим три ситуации:
- [latex]\alpha>1[/latex]
- [latex]0<\alpha\leq1[/latex]
- [latex]\alpha\leq0[/latex]
- Пусть [latex]\alpha>1[/latex]. [latex]\begin{vmatrix}\frac{\sin{x}}{x^\alpha}\end{vmatrix}\leq\frac{1}{x^\alpha}[/latex], следовательно, в силу сходимости интеграла [latex]\int_{1}^{+\infty}\frac{dx}{x^\alpha}[/latex], сходится интеграл [latex]\widetilde{I}=\int_{1}^{+\infty}\frac{\left|\sin{x}\right|}{x^\alpha}dx[/latex], т.е. интеграл [latex]I[/latex] сходится абсолютно. Отсюда, по теореме 1, следует сходимость интеграла [latex]I[/latex].
- Рассмотрим второй случай. Интегрируя по частям, получим
[latex]\left.\begin{matrix}I=-\frac{\cos{x}}{x^\alpha}\end{matrix}\right|_{1}^{+\infty}-\alpha\int\limits_{1}^{+\infty}\frac{\cos{x}}{x^{\alpha+1}}dx[/latex],
где [latex]\lim_{x\rightarrow+\infty}\frac{\cos{x}}{x^{\alpha}}=0[/latex], а [latex]\int_{1}^{+\infty}\frac{\cos{x}}{x^{\alpha+1}}dx[/latex] сходится абсолютно. Следовательно, [latex]\int_{1}^{+\infty}\frac{\cos{x}}{x^{\alpha+1}}dx[/latex] сходится и интеграл [latex]I[/latex] сходится при [latex]0<\alpha\leq1[/latex]. Интеграл [latex]\int_{1}^{+\infty}\frac{\left|\sin{x}\right|}{x^\alpha}dx[/latex] при [latex]0<\alpha\leq1[/latex] расходится, а значит, что при [latex]0<\alpha\leq1[/latex] интеграл [latex]I[/latex] сходится условно.
- Рассмотрим [latex]\alpha\leq0[/latex]. Используя критерий Коши, докажем расходимость интеграла [latex]I[/latex]. Пусть [latex]\delta>1[/latex]. Выберем число [latex]n\in\mathbb{N}[/latex] таким, чтобы [latex]2n\pi>\delta[/latex], и положим
[latex]\xi’_{\delta}=2n\pi+\frac{\pi}{6},\xi»_{\delta}=2n\pi+\frac{5\pi}{6}[/latex].
Т.к. при [latex]x\in[\xi’_{\delta};\xi»_{\delta}][/latex] выполняется неравенство [latex]\sin{x}\geq\frac{1}{2}[/latex] и [latex]\frac{1}{x^\alpha}\geq1[/latex] при [latex]x\geq1[/latex] и [latex]\alpha\leq0[/latex], то
[latex]\begin{vmatrix}\int\limits_{\xi’_{\delta}}^{\xi»_{\delta}}\frac{\sin{x}}{x^\alpha}dx\end{vmatrix}=\int\limits_{\frac{\pi}{6}+2n\pi}^{\frac{5\pi}{6}+2n\pi}\frac{\sin{x}}{x^\alpha}dx\geq\frac{1}{2}\int\limits_{\frac{\pi}{6}+2n\pi}^{\frac{5\pi}{6}+2n\pi}dx=\frac{\pi}{3}.[/latex]Очевидно, что условие Коши не выполняется и интеграл расходится при [latex]\alpha\leq0[/latex].
Ответ:[latex] I=\int\limits_{1}^{+\infty}\frac{\sin{x}}{x^\alpha}dx[/latex]:
- абсолютно сходится при [latex]\alpha>1[/latex];
- условно сходится при [latex]0<\alpha\leq1[/latex];
- расходится при [latex]\alpha\leq0[/latex].
- А.М. Тер-Крикоров, М.И. Шабунин, Курс математического анализа, физмат-лит, 2001, стр. 375-377
- Л.Д. Кудрявцев «Курс математического анализа», том №1, Высшая школа, 1988-1989, стр. 666-672
- Г.М. Фихтенгольц «Курс дифференциального и интегрального исчисления», том №2, стр. 559-563
- Конспект лекций Лысенко З.М.
Абсолютная и условная сходимость несобственных интегралов
Проверьте свои знание по теме «Абсолютная и условная сходимость несобственных интегралов».