Бісектриси вписаного чотирикутника утворюють у перетині опуклий чотирикутник. Доведіть, що діагоналі отриманого чотирикутника перпендикулярні.
С.Берлов
Розв’язок
Продовжимо протилежні сторони вихідного чотирикутника $ABCD$ до перетину в точках $P$ і $Q$ (див. рисунок). Доведемо спочатку, що бісектриса $PF$ кута $P$ перпендикулярна бісектрисі $QE$ кута $Q.$
Оскільки чотирикутник $ABCD$ — вписаний, зовнішній кут $DCQ$ дорівнює внутрішньому куту в протилежній вершині $A.$ Так як пряма $QE$ — бісектриса кута $Q$, то кути трикутника $AQE$ відповідно дорівнюють кутам трикутника $CQG.$ Отже, $\angle CGQ = \angle AEQ$. Але кути $CGQ$ і $PGE$ рівні як вертикальні. Тому $\angle PEG = \angle PGE$ і $\triangle PEG$ — рівнобедрений.
Отже, бісектриса кута $P$ є серединним перпендикуляром до відрізка $EG,$ тобто бісектриса $PF$ кута $P$ перпендикулярна бісектрисі $QE$ кута $Q.$
Звідси легко випливає твердження задачі, оскільки діагоналі чотирикутника, утвореного на бісектрисах чотирикутника $ABCD,$ лежать на бісектрисах $PF$ і $QE.$
У випадку, коли будь-які дві протилежні сторони чотирикутника $ABCD$ паралельні, твердження задачі випливає із симетричності креслення.
Через основание $L$ и $M$ биссектрисы $BL$ и медианы $BM$ неравнобедренного треугольника $ABC$ провели прямые параллельно, соответственно, сторонам $BC$ и $BA$ до пересечения с прямыми $BM$ и $BL$ в точка $D$ и $E$. Докажите, что угол $BED$ прямой.
Рис. 1
Первое решение
Обозначим $O=LD \cap ME$, и пусть точка $O$ лежит внутри треугольника $ABC$ (именно такое расположение было предложено рассмотреть на олимпиаде). $ME$ — медиана треугольника $MBC$ (Рис.1), а значит, и треугольника $MDL$, т.е. $OL=OD$. Далее $\angle DLB = \angle LBC,\; \angle MEL = \angle ABL = \angle LBC$. Получили: $\angle MEL = \angle DLB, \; OL= OE$.
Итак, в треугольнике $LED$ медиана $EO$ равна половине стороны $LD$. Следовательно, угол $DEL$ прямой, откуда сразу следует утверждение задачи.
Случай внешнего расположения точки $O$ рассматривается аналогично. А можно и не рассматривать этот случай, а просто сослаться на такое почти очевидное предложение.
Рис. 2
Лемма. Пусть $B$ и $C$ — произвольные точки на выходящих из $A$ лучах (Рис.2), $BD \parallel CK, \; CE \parallel BF$. Тогда и $ED \parallel KF$.
Следует из теоремы Фалеса; легко получить его с помощью векторов.
С помощью векторов нетрудно получить и естественное решение исходной задачи.
Второе решение
Рис. 3
Ниже мы будем рассматривать векторы в базисе $\{\vec{a} , \; \vec{c} \}, \;$ где $\vec{a} = \vec{BC},\; \vec{c} = \vec{BA}, \;$ длины этих векторов обозначим через $a$ и $c$ соответственно.
Обозначим $\vec{BE} = \alpha \vec{BL}$, тогда $$ \alpha \vec{BL} + \vec{EM} = \vec{BM} =\frac{1}{2} \Big( \vec{a} + \vec{c} \Big).$$ Приравняем проекции левой и правой частей этого равенства на вектор $\displaystyle \vec{a}: \frac{\alpha c}{a+c} = \frac{1}{2}$, откуда $\displaystyle \alpha = \frac{a+c}{2c}$.
Аналогично, положив $\vec{BD} = \beta \vec{BM}$, получим $\beta \vec{BM}+\vec{DL}=\vec{BL}$; проектируя обе части этого равенства на $\vec{c}$, находим $\displaystyle \frac{\beta}{2}=\frac{a}{a+c}$.
Получили $\displaystyle \vec{BE} = \frac{\vec{a}}{2} + \frac{a}{2c} \vec{c},\; \vec{BD} = \frac{a}{a+c} \Big(\vec{a} + \vec{c} \Big)$. Таким образом, $\displaystyle\frac{\vec{BE}}{a} = \frac{1}{2}\left( \frac{\vec{a}}{a} + \frac{\vec{c}}{c}\right)$ — это высота треугольника, построенного на единичных векторах $\displaystyle \frac{\vec{a}}{a}$ и $\displaystyle \frac{\vec{c}}{c}$. Далее, $\displaystyle \frac{\vec{BE}}{a} = \frac{1}{a+c}\left(a \cdot \frac{\vec{a}}{a}+c \cdot \frac{\vec{c}}{c}\right)$ — (внутренняя) точка основания этого треугольника, отличная от основания высоты. Поэтому очевидно(Рис.3), что $\displaystyle \frac{\vec{BD}}{a}-\frac{\vec{BE}}{a}\bot\vec{BE}$ — и утверждение задачи доказано.
Разумеется, к этому решению можно было подойти более формально: вектор $\displaystyle \vec{BD}-\vec{BE}=\frac{a \left( a-c \right)}{2 \left( a+c \right)} \left(\frac{\vec{a}}{a}-\frac{\vec{c}}{c}\right) $ параллелен основанию треугольника. А можно было и воспользоваться понятием скалярного произведения векторов: $$\displaystyle \left( \vec{BD}, \vec{BE} \right) = \frac{a^2}{2} \left( 1+\frac{\Big( \vec{a}, \vec{c} \Big)}{ac} \right), $$ $$\displaystyle \left( \vec{BE}, \vec{BE} \right) = \frac{a^2}{2} \left( 1+\frac{\Big( \vec{a}, \vec{c} \Big)}{ac} \right).$$
Очевидно, что равенство выполняется тогда и только тогда, когда $a^2+b^2=2ab$, то есть тогда и только тогда, когда $a=b.$
Второе решение
Пусть $a>b,$ тогда $\angle A > \angle B, $ и угол $CDB$ — тупой. Проведем через точку $D$ отрезок $A’B’$ (см. рисунок), перпендикулярный $CD.$
Поскольку $BD>AD$ (это легко следует из соотношения $\frac {BC}{AC} = \frac {a}{b} > 1$), площадь треугольника $BDB’$ больше площади треугольника $ADA’.$ Поэтому $S>S_{A’CB’}=l^2 \mathop{\rm tg} \frac \gamma{2}.$ При $a=b$ равенство $S = l^{2} \mathop{\rm tg} \frac \gamma{2}$ очевидно.
Н. Немировская, В. Сендеров
Дополнения
Докажем, что $ l=\frac {2ab}{a+b} \cos \frac \gamma{2}.$
Вычислим площади треугольников $BCD$, $ACD$ и $ABC:$ $$ S_{BCD} = \frac 12 \cdot BC \cdot CD \cdot \sin \angle BCD = \frac 12 b l \sin \frac \gamma{2}. $$ $$ S_{ACD} = \frac 12 \cdot AC \cdot CD \cdot \sin \angle ACD = \frac 12 a l \sin \frac \gamma{2}.$$ $$S_{ABC} = \frac 12 \cdot AC \cdot BC \cdot \sin \angle BCA = \frac 12 a b \sin \gamma.$$
Выразим $l$, используя равенство $S_{ABC} = S_{BCD} + S_{ACD}:$ $$
\frac 12 ab \cdot \sin \gamma = \frac 12 b l \cdot \sin \frac \gamma{2} + \frac 12 a l \cdot \sin \frac \gamma{2} \Leftrightarrow \frac 12 a b \cdot \sin \gamma = \frac 12 \left(a+b \right) l \sin \frac \gamma{2} \Leftrightarrow $$ $$ \Leftrightarrow l = \frac {ab\sin \gamma}{ \left(a+b \right) \sin \frac \gamma{2}} \Leftrightarrow l = \frac {ab \cdot 2\sin \frac \gamma{2} \cos \frac \gamma{2}}{\left(a+b \right) \sin \frac \gamma{2} } \Leftrightarrow l = \frac {2ab}{a+b} \cos \frac \gamma{2}. $$
Три отрезка, выходящие из разных вершин треугольника $ABC$ и пересекающиеся в одной точке $M$, делят его на шесть треугольников. В каждый из них вписана окружность. Оказалось, что четыре из этих окружностей равны. Следует ли отсюда, что треугольник $ABC$ — правильный, если $M$ — точка пересечения а)медиан, б)высот, в)биссектрис, г)$M$ — произвольная точка внутри треугольника?
Решение
Ответ: а), б), в) да; г) нет.
Назовем треугольники, в которые вписаны окружности равных радиусов, отмеченными. Заметим, что какие-то два из отмеченных треугольников примыкают к одной из сторон треугольника $ABC$. Пусть, для определенности, это будут треугольники $BMD$ и $DMC$.
Рис. 1
Поскольку равны площади и радиусы вписанных окружностей отмеченных треугольников, равны и их периметры. Поэтому (рис.$1$) $BM = MC$, и, следовательно, $AB = AC$. Пусть $AD = m$, $BE = CF = n$, $AB = AC = l$, $BC = a$, а треугольник $BMF$ — отмеченный. Тогда из равенства периметров треугольника $BMF$ и $BMD$ получаем $$\frac{1}{2}+\frac{n}{3}+\frac{2n}{3}=\frac{a}{2}+\frac{2n}{3}+\frac{m}{3},$$
т. е. $$\frac{1}{2}+\frac{n}{3}=\frac{a}{2}+\frac{m}{3}. \tag{*}$$
Пусть $X$ и $Y$ — точки касания вписанных окружностей (см. рис.$1$) со сторонами $BD$ и $BF$, $DX = x$, $FY = y$. Из свойств отрезков касательной следует, что $$BM = \frac{1}{2}-y+\frac{n}{3}-y=\frac{a}{2}-x+\frac{m}{3}-x,$$ и с учетом $\left(*\right)$ получаем $$x=y.$$ Поскольку $\angle ADB$ — прямой, $\angle CFB$ — тоже прямой, т. е. медиана $CF$ является высотой, и треугольник $ABC$ — правильный.
Если отмечен треугольник $AME$, то, как и раньше, получаем из равенства периметров $$\frac{l}{2}+\frac{2m}{3}+\frac{n}{3}=\frac{a}{2}+\frac{2n}{3}+\frac{m}{3},$$ т. е. $$\frac{l-a}{2}=\frac{n-m}{3}.\tag{**}$$
Однако во всяком треугольнике большей стороне соответствует меньшая медиана. Поэтому, если $l>a$, то $n<m$, наоборот, при $l<a$ будет $n>m$, так что равенство (**) возможно лишь при $a=l$. Итак, и в этом случае утверждение доказано.
Остальные ситуации совпадают с разобранными с точностью до обозначений.
Рис. 2
И в этом случае треугольники $BMD$ и $CMD$ равны (рис.$2$), поскольку $\angle BMD = \angle CMD$ (эти углы равны, так как окружности одинаковых радиусов касаются отрезка $MD$ в одной точке). Значит, $BD=DC$, $AB=AC$, $MF=ME$, $BF=EC$, так что равны треугольники $MBF$ и $MEC$. Если они отмеченные, то равны и треугольники $MBF$ и $MBD$ (у них общая гипотенуза $BM$ и равные радиусы вписанных окружностей, при этом $\angle FBM=\angle MBD$ — в противном случае, фигура $MFBD$ окажется прямоугольником).
Если отмечены равные треугольники $AMF$ и $AME$, то равны и треугольники $AME$ и $BMD$ (они подобны и имеют одинаковые радиусы вписанных окружностей). Но тогда $AD=BE$, что и завершает доказательство.
Рис. 3
Мы можем считать отмеченными треугольники $AMF$ и $AME$ (рис.$3$). Но тогда окружности, вписанные в эти треугольники, касаются отрезка $AM$ в общей точке. Отсюда следует, что $\angle AME=\angle AMF$ и $\angle ABE = \angle ACF$, т. е. $\angle B=\angle C$ и $AB=AC$. Если отмечен треугольник $BMF$, то, пользуясь формулой для площади $S=rp$ применительно к треугольникам $AMF$ и $FMB$, получаем $$\frac{AM+MF+AF}{AF}=\frac{MF+BF+BM}{BF}.\tag{***}$$ Применяя к этим треугольникам теорему синусов, перепишем (***) так:$$\frac{\sin\alpha +\sin(2\alpha +\beta )}{\cos\beta }= \frac{\sin\beta +\sin(2\alpha +\beta )}{\cos2\beta },$$ откуда получаем после преобразований (пользуясь тем, что $\alpha +2\beta =\frac{\pi}{2}$), что $$\sin3\beta =1, т. е. \beta =\frac{\pi}{6},$$ т. е. $ABC$ — правильный треугольник.
Если отмечены треугольники $BMD$ и $CMD$, то , так как точка $M$ — центр вписанной в треугольник $ABC$ окружности, получаем $$\frac{S_{AME}}{AE}=\frac{S_{CMD}}{CD},$$ что дает (формула $S=rp$) $$\frac{AE+EM+MA}{AE}=\frac{CM+MD+DC}{CD},$$ после чего, рассуждая как и раньше, приходим к равенству $$\cos2\beta +\sin3\beta =1+\sin\beta ,$$ из которого находим без труда $\beta =\frac{\pi}{6}$. И в этом случае $ABC$ — правильный треугольник.
Рис. 4
Треугольник $ABC$ может и не быть равносторонним. Для его построения (рис.$4$) проведем прямую, перпендикулярную $AF$, и выберем на ней точку $M$ так, что $\frac{\pi }{2}>\angle MAF>\frac{\pi }{3}$. В построенные на рисунке 4 углы впишем равные окружности с центрами $O_{1}$ и $O_{2}$, затем из точки $A$ проведем касательную к окружности $O_{2}$. Эта касательная пересечет прямую $MF$, в некоторой точке $C$. Симметрично отразив картинку относительно прямой $MF$, получим неправильный равнобедренный треугольник $ABC$ $\left(AC=BC\right)$, удовлетворяющий условию задачи.
Окружность, вписанная в $\triangle ABC$, касается его сторон в точках $A’$, $B’$, $C’$, точка $L$ – середина отрезка $A’B’$ (см. рисунок). Докажите, что $\angle ALB$ — тупой.