Processing math: 100%

Действия над комплексными числами в алгебраической и тригонометрической форме. Сопряженность

Действия над комплексными числами в алгебраической форме

Спойлер

Сложение

Пусть [latex]z_1,z_2\in C[/latex], [latex]z_1=a_1+b_1i[/latex] и [latex]z_2=a_2+b_2i[/latex].
Тогда [latex]z=[/latex] [latex]z_1 + z_2[/latex] получается простым приведением подобных:
[latex]z_1 + z_2=[/latex] [latex]z_1 + z_2=[/latex] [latex]a_1+b_1i+a_2+b_2i=[/latex] [latex](a_1+a_2)+(b_1+b_2)i[/latex]

Спойлер

Вычитание

Пусть [latex]z_1,z_2\in C[/latex], [latex]z_1=a_1+b_1i[/latex] и [latex]z_2=a_2+b_2i[/latex].
Тогда [latex]z=[/latex] [latex]z_1 — z_2[/latex] получается аналогично со сложением:
[latex]a_1+b_1i — (a_2+b_2i)=[/latex] [latex](a_1-a_2)+(b_1-b_2)i[/latex]

Спойлер

Умножение

Пусть [latex]z_1,z_2\in C[/latex], [latex]z_1=a_1+b_1i[/latex] и [latex]z_2=a_2+b_2i[/latex].
Тогда [latex]z=[/latex] [latex]z_1 \times z_2=[/latex] [latex](a_1+b_1i) \times (a_2+b_2i)[/latex].
Что делать на этом шаге? Все довольно просто, как Вы наверно и подумали, надо всего лишь раскрыть скобки и привести подобные:
[latex](a_1+b_1i) \times (a_2+b_2i)=[/latex] [latex](a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i[/latex]

Спойлер

Определение комплексно сопряженного числа

Пусть [latex]z_1,z_2\in C[/latex], [latex]z_1=a_1+b_1i[/latex] и [latex]z_2=a_2+b_2i[/latex].
[latex]z_1[/latex] называют комплексно сопряженным к [latex]z_2[/latex], если [latex]a_1 = a_2[/latex] и [latex]b_1 = -b_2[/latex], т.е. [latex]z_1=a_1+b_1i[/latex] и [latex]z_2=a_1-b_1i[/latex].
И при перемножении [latex]z_1 \times z_2=[/latex] [latex]{a_1}^2-{b_1}^2[/latex]
Это потребуется для нашего следующего действия.

Деление

Пусть [latex]z_1,z_2\in C[/latex], [latex]z_1=a_1+b_1i[/latex] и [latex]z_2=a_2+b_2i[/latex].
Тогда [latex]z=[/latex] [latex]\frac{z_1}{z_2}=[/latex] [latex]\frac{a_1+b_1i}{a_2+b_2i}[/latex]
На этом шаге обычно все и остановилось бы, но мы сможем еще упростить выражение благодаря знанию комплексно сопряженных чисел. Умножим числитель и знаменатель на комплексно сопряженное число к знаменателю, получим:
[latex]\frac{(a_1+b_1i)(a_2-b_2i)}{(a_2+b_2i)(a_2-b_2i)}=[/latex] [latex]\frac{(a_1a_2+b_1b_2)+(a_2b_1-a_1b_2)i}{{a_2}^2+{b_2}^2}[/latex]

Спойлер

Действия над комплексными числами в тригонометрической форме

Спойлер

Умножение

Произведением двух комплексных чисел [latex]z_1=r_1(cos\phi_1+isin\phi_1)[/latex] и [latex]z_2=r_2(cos\phi_2+isin\phi_2)[/latex] будет комплексное число вида [latex]z=z_1z_2=r_1r_2(\cos(\phi_1+\phi_2)+i\sin(\phi_1+\phi_2)[/latex]

Спойлер

Деление

Частным двух комплексных чисел [latex]z_1=r_1(cos\phi_1+isin\phi_1)[/latex] и [latex]z_2=r_2(cos\phi_2+isin\phi_2)[/latex] будет комплексное число вида [latex]z=z_1z_2=\frac{r_1}{r_2}(\cos(\phi_1-\phi_2)+i\sin(\phi_1-\phi_2)[/latex]

Возведение в степень

[latex]\forall z \in C[/latex] [latex]z^n=[/latex] [latex]{r(\cos\phi+i\sin\phi)}^n=[/latex] [latex]r^n(\cos(n\phi)+i\sin(n\phi))[/latex]

Спойлер

Извлечение корня

[latex]\forall z \in C[/latex] [latex]\sqrt[n]{z}=[/latex] [latex]\sqrt[n]{r(\cos\phi+i\sin\phi)}=[/latex] [latex]\sqrt[n]{r}(\cos\frac{\phi+2\pi k}{n}+i\sin\frac{\phi+2\pi k}{n})[/latex], [latex]k=\overline{0,n-1}[/latex]

Спойлер

Тест поможет Вам проверить, как Вы усвоили материал

Литература

  1. Курош А.Г. Курс высшей алгебры. М.: Наука, 1968,cтр 115-123
  2. Кострикин А.И. Введение в алгебру. М.: Наука, 1977, стр 194-210