Пусть функция $latex f$ определена в некоторой окрестности точки $latex x_0$ и пусть существует конечный предел отношения
$latex \lim\limits_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}<\infty$
Тогда этот предел называют производной функции $latex f$ в точке $latex x_0$ и обозначают:
$latex f'(x_0)$ или $latex y'(x_0)$ или $latex \frac{\mathrm{d}y}{\mathrm{d}x}_{x\to x_0}$ или $latex \frac{\mathrm{d}f}{\mathrm{d}x}_{x\to x_0}$.
$latex f'(x_0)= \lim\limits_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}$
$latex \Delta y=f(x_0+\Delta x)-f(x_0)$ называется приращением функции в точке $latex x_0$
$latex \Delta x=x-x_0$ называется приращением аргумента в точке $latex x_0$.
Тест по теме «Определение производной» и на понимание примеров к ней.
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 5
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат
Ваш результат
Рубрики
Нет рубрики0%
Ваш результат был записан в таблицу лидеров
Загрузка
1
2
3
4
5
С ответом
С отметкой о просмотре
Задание 1 из 5
1.
Количество баллов: 1
Дана функция $latex f(x)$. В каких видах можно записать ее производную в точке $latex x_0$?
Правильно
Неправильно
Задание 2 из 5
2.
Количество баллов: 1
Тест на понимание примеров
Соотнесите функции и их производные
Элементы сортировки
$$0$$
$$\alpha x^{\alpha-1}$$
$$\frac{1}{x}$$
$$a^x\ln a$$
$$\cos x$$
$$C$$
$$x^\alpha$$
$$\ln x$$
$$a^x$$
$$\sin x$$
Правильно
Неправильно
Задание 3 из 5
3.
Количество баллов: 1
Используя производные из примеров, вычислите следующие производные в точке $latex x_0$ (сначала вычислите производную, а потом подставьте $latex x_0$) и расставьте их по убыванию.
$$x^3, x_0=2$$
$$2^x, x_0=e$$
$$\sin x, x_0=0$$
$$\ln x, x_0=2$$
$$235, x_0=11$$
Правильно
Неправильно
Задание 4 из 5
4.
Количество баллов: 1
В выражении $latex \lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$
Δx мы называем (приращением)(аргумента) в точке x0.
Правильно
Неправильно
Задание 5 из 5
5.
Количество баллов: 1
Какое из следующих утверждений неверно?
Правильно
Неправильно
Источники:
Лысенко З.М. Конспект лекций по курсу математического анализа. (тема «Дифференциальное вычисление функций с одной переменной»).
Метод нахождения пределов функций, раскрывающий неопределённости вида $latex \frac{0}{0} $ или $latex \frac{\infty}{\infty} $ Правило позволяет заменить предел отношения функций пределом отношения их производных.
1. Докажем теорему для случая, когда пределы функций равны нулю.
Существует $latex \lim\limits_{x\to a}\frac{f'(x)}{g'(x)} &s=1$
Вывод: Тогда существует $latex \lim\limits_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim\limits_{x \rightarrow a} \frac{f'(x)}{g'(x)} &s=1$
Доказательство: Доопределим функции в точке $latex a $ нулём. Из 1 условия следует, что $latex f(x) $ и $latex g(x) $ непрерывны на отрезке $latex [a,x] $, где $latex x $ принадлежит рассматриваемой окрестности точки $latex a $. Применим обобщённую формулу конечных приращений (Коши) к $latex f(x) $ и $latex g(x) $ на отрезке $latex [a,x] $ $latex \exists \xi\in [a,x]:\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f'(\xi)}{g'(\xi)}&s=1 $ Так как $latex f(a)=g(a)=0 $ получим, что $latex \forall x $ $latex \exists \xi \in [a,x]:\frac{f(x)}{g(x)}=\frac{f'(\xi)}{g'(\xi)} &s=1$ Пусть предел отношения производных равен $latex A $. Следовательно: $latex \lim\limits_{x \to a} \frac{f'(\xi(x))}{g'(\xi(x))}=\lim\limits_{y \to a} \frac{f'(y)}{g'(y)}=A &s=1$, так как $latex \lim\limits_{x \to a} \xi(x)=a &s=1$
2. Докажем теорему для случая, когда пределы функций равны бесконечности.
Условия:
$latex f(x) $ и $latex g(x) $ дифференцируемы при $latex x>a $
Существует конечный $latex \lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)}=A &s=1$
Вывод: Тогда существует $latex \lim\limits_{x\to\infty}\frac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)} &s=1$ Доказательство: Из условия 2 следует, что $latex \exists a_{1}>a:\forall x>a_{1} \to |f(x)|>1,|g(x)|>1 $, и поэтому $latex f(x)\neq 0,g(x)\neq0 $ при $latex x>a_{1} $. По определению предела (условие 4) для заданного числа $latex \varepsilon >0 $ можно найти $latex \delta_{1}=\delta_{1}(\varepsilon)\geq a_{1} $ такое, что для всех $latex t>\delta_{1} $ выполняется неравенство: $latex A-\frac{\varepsilon}{2}<\frac{f'(t)}{g'(t)}<A+\frac{\varepsilon}{2} &s=1$ Фиксируя $latex x_{0}>\delta_{1} $ выберем, пользуясь условием 2 число $latex \delta_{2}>x_{0} $
такое, чтобы при всех $latex x>\delta_{2} $ выполнялись неравенства: $latex \left |\frac{f(x_{0})}{f(x)}<\frac{1}{2}\right | &s=1$ и $latex \left |\frac{g(x_{0})}{g(x)}<\frac{1}{2}\right | &s=1$ Для доказательства теоремы нужно доказать, что существует такое $latex \delta $, что при всех $latex x>\delta $ выполняется неравенство: $latex A-\varepsilon<\frac{f(x)}{g(x)}<A+\varepsilon (*) &s=1$ Число $latex \delta $ будет выбрано ниже. Считая, что $latex x>\delta $, применим к функциям $latex f $ и $latex g $ на отрезке $latex [x;x_{0}] $ обобщённую формулу конечных приращений (Коши). $latex \exists \xi \in [x_{0};x]: \frac{f(x)-f(x_{0})}{g(x)-g(x_{0})}=\frac{f'(\xi)}{g'(\xi)} &s=1$ Преобразуем левую часть неравенства: $latex \frac{f(x)-f(x_{0})}{g(x)-g(x_{0})}=\frac{f(x)}{g(x)}(\varphi(x))^{-1} &s=1$, где $latex \varphi(x)=\frac{1-\frac{g(x_{0})}{g(x)}}{1-\frac{f(x_{0})}{f(x)}}=1+\beta(x) &s=1$ Заметим, что $latex \beta(x)\to0 $ при $latex x\to+\infty $ в силу условия 2, поэтому $latex \forall \varepsilon>0 \exists \delta\geq\delta_{2}: $ $latex \forall x>\delta\to|\beta(x)|<\frac{\frac{\varepsilon}{2}}{|A|+ \frac{\varepsilon}{2}}(**) &s=1$ Так как $latex \xi>x_{0}>\delta_{1} $, то для всех $latex x>\delta_{2} $ выполняется неравенство: $latex A-\frac{\varepsilon}{2}<\frac{f(x)}{g(x)} (\varphi(x))^{-1}<A+\frac{\varepsilon}{2} &s=1$ Если $latex x>\delta $, то $latex \varphi(x)>0 $, и поэтому неравенство равносильно следующему: $latex (A-\frac{\varepsilon}{2})(1+\beta(x))< $ $latex \frac{f(x)}{g(x)}<(A+\frac{\varepsilon}{2})(1+\beta(x)) &s=1$ Используя неравенство $latex (**) $, получаем: $latex (A-\frac{\varepsilon}{2})(1+\beta(x))=$ $latex A-\frac{\varepsilon}{2}+(A-\frac{\varepsilon}{2})\beta(x) \geq $ $latex (A-\frac{\varepsilon}{2})-&s=1-(|A|+\frac{\varepsilon}{2})|\beta(x)|> $ $latex A-\frac{\varepsilon}{2}-\frac{\varepsilon}{2}=A-\varepsilon &s=1$ Аналогично находим: $latex (A+\frac{\varepsilon}{2})(1+\beta(x))\leq $ $latex A+\frac{\varepsilon}{2}+(|A|+\frac{\varepsilon}{2})|\beta(x)|< A+\varepsilon &s=1$
Таким образом для всех $latex x>\delta $ выполняется неравенство $latex (*) $, а это означает, что справедливо утверждение: $latex \lim\limits_{x\to\infty}\frac{f(x)}{g(x)}=\lim\limits_{x\to\infty}\frac{f'(x)}{g'(x)} &s=1$
Примеры:
Пример 1. Найти $latex \lim\limits_{x \to 1}\frac{3x^{10}-2x^{5}-1}{x^{3}-4x^{2}+3} &s=1$ Обозначим $latex f(x)=3x^{10}-2x^{5}-1 $ , $latex g(x)=x^{3}-4x^{2}+3 $. Так как $latex \lim\limits_{x\to1}f(x)=\lim\limits_{x\to1}g(x)=0 $, воспользуемся правилом Лопиталя для ситуации $latex \frac{0}{0} $. $latex f'(x)=30x^{9}-10x^{4} $, $latex f'(1)=20 $ $latex g'(x)=3x^{2}-8x $, $latex g'(1)=-5 $ По доказанной теореме: $latex \lim\limits_{x\to1}\frac{f(x)}{g(x)}=\lim\limits_{x\to1}\frac{f'(x)}{g(x’)}=\frac{20}{-5}=-4 &s=1$
Ответ: -4.
Пример 2. Доказать, что [latex] \lim\limits_{x\to\infty}\frac{\ln x}{x^{\alpha}}=0,\alpha>0 [/latex]
Применяя правило Лопиталя для ситуации $latex \frac{\infty}{\infty} $, получим: [latex]\lim\limits_{x\to\infty}\frac{\ln x}{x^{\alpha}}=[/latex][latex]\lim\limits_{x\to\infty}\frac{\frac{1}{x}}{\alpha x^{\alpha-1}}=[/latex][latex] \lim\limits_{x\to\infty}\frac{1}{\alpha x^{\alpha}}=0[/latex]
Доказано.
Источники:
Конспект по курсу математического анализа Лысенко З.М.
Существует $latex \lim\limits_{x\to a}\frac{f'(x)}{g'(x)} $
Правильно
Неправильно
Задание 4 из 10
4.
Какая теорема применяется при доказательстве раскрытия неопределённости вида $latex \frac{0}{0} $?
Правильно
Неправильно
Задание 5 из 10
5.
В процессе доказательства теоремы для раскрытия неопределённости вида $latex \frac{0}{0} $ $latex \xi $ рассматривается нами как…
Правильно
Неправильно
Задание 6 из 10
6.
В доказательстве теоремы для случая $latex \frac{\infty}{\infty}$ утверждение , что $latex \exists a_{1} > a : \forall x>a_{1} \to |f(x)|>1 , |g(x)|>1 $ следует из условия о…
Правильно
Неправильно
Задание 7 из 10
7.
Правило Лопиталя позволяет заменить предел отношения функций …
Интегрирование функций вида $latex R(x,(\frac{ax+b}{cx+d})^{r_{1}},…,(\frac{ax+b}{cx+d})^{r_{n}})&s=2$
Интегралы типа $latex \int R(x,(\frac{ax+b}{cx+d})^{r_{1}},…,(\frac{ax+b}{cx+d})^{r_{n}}),$
где a, b, c, d — действительные числа, $latex r_{k}\in \mathbb{Q}(k=\overline{1,n})$, сводятся к интегралам от рациональной функции путем подстановки
$latex \frac {ax+b}{cx+d}=t^{p},$
где p — наименьшее общее кратное знаменателей чисел $latex r_{1},r_{2},…r_{n}.$
Действительно, из подстановки $latex \frac{ax+b}{cx+d}=t^{p}$ следует, что $latex x=\frac{b-dt^{p}}{ct^{p}-a}$ и $latex dx=-\frac {dpt^{p-1}(ct^{p}-a)-(b-dt^{p})cpt^{p-1}}{(ct^{p}-a)^{2}}dt$, т.е. x и dx выражаются через рациональные функции от t. При этом и каждая степень дроби $latex \frac{ax+b}{cx+d}$ выражается через рациональную функцию от t.
2) Найти интеграл $latex I=\int\frac{dx}{\sqrt[3]{(x+2)^{2}}-\sqrt{x+2}}.$ Наименьшее общее кратное знаменателей дробей $latex \frac{2}{3}$ и $latex \frac{1}{2}$ есть 6. Сделав замену
Символами Ландау являются «О» большое и «о» малое ([latex]O[/latex] и [latex]o[/latex]).
Определение:
Пусть $latex f(x)$ и $latex g(x)$ — две функции, определенные в некоторой проколотой окрестности точки $latex x_0$, причем в этой окрестности $latex g$ не обращается в ноль. Говорят, что:
$latex f$ является «О» большим от $latex g$ при $latex x\to x_0$ и пишут $latex f=\underset{x\to x_0}{O(g)}$, если существует такая константа $latex C>0$, что для всех $latex x$ из некоторой окрестности точки $latex x_0$ имеет место неравенство $latex |f(x)| \leq C |g(x)|$;
$latex f$ является «о» маленьким от $latex g$ при $latex x\to x_0$ и пишут $latex f=\underset{x\to x_0}{o(g)}$, если для любого $latex \varepsilon >0$ найдется такая проколотая окрестность $latex U’_{x_0}$ точки $latex x_0$, что для всех $latex x \in U’_{x_0}$ имеет место неравенство $latex |f(x)|<\varepsilon|g(x)|$.
Иначе говоря, в первом случае отношение $latex |f|/|g|$ в окрестности точки $latex x_0$ ограничено сверху, а во втором оно стремится к нулю при $latex x\to x_0$, то есть функция $latex f$ является бесконечно малой в сравнении с $latex g$.
Примеры:
$latex x^2=\underset{x\to 0}{o(x)}$, т.к. $latex \lim\limits_{x\to 0}\frac{x^2}{x}=\lim\limits_{x\to 0}x=0;$
$latex \sin^2 x=\underset{x\to x_0}{O(x)}, x_0 \epsilon \mathbb{R}$, т.к. $latex \lim\limits_{x\to\infty}\frac{\frac{1}{x}}{x}=\lim\limits_{x\to\infty}\frac{1}{x^2}=0;$
$latex -x^3={O(x)}$, т.к. $latex \lim\limits_{x\to 0}\frac{-x^3}{x}=\lim\limits_{x\to 0}-x^2; $ а функция $latex -x^2$ ограничена сверху в окрестности точки 0.
$latex \sin^2 x={O(x)}, x_0 \epsilon \mathbb{R}$, т.к. $latex \lim\limits_{x\to x_0}\frac{\sin^2 x}{x}=\lim\limits_{x\to x_0}\sin x;$ а функция $latex \sin x$ всегда ограничена сверху единицей.
Свойства «О» большого и «о» маленького
Для функций $latex f=f(x),\:g=g(x)$ и $latex x \epsilon \mathbb{R}$ справедливы равенства:
$latex o(f)+o(f)=o(f);$
$latex o(f)$ тем более есть $latex O(f);$
$latex o(f)+O(f)=O(f);$
$latex O(f)+O(f)=O(f);$
$latex \frac{o(f(x))}{g(x)}=o(\frac{f(x)}{g(x)})$ и $latex \frac{O(f(x))}{g(x)}=O(\frac{f(x)}{g(x)}),$ если $latex g\neq 0;$
Пусть точка движется по прямой. $latex S=S(t)$ — путь пройденый точкой за время $latex t$ от начала движения. Путь пройденный точкой за время от $latex t$ до $latex t+\Delta t =$ $latex S(t+\Delta t) — S(t)$ .
Средняя скорость: $latex V_{cp}=\frac{S(t+\Delta t)-S(t)}{\Delta t}$
Если движение точки — равномерное, то $latex V_{cp}$ — постоянная.
Если же движение неравномерное, то $latex V_{cp}$ не меняется при изменении $latex \Delta t$ . Определение: Мгновенной скоростью называют скорость точки в момент $latex t$: $latex V(t)=\lim\limits_{\Delta t\to 0} V_{cp}=\lim\limits_{\Delta t\to 0} \frac{S(t+\Delta t)-S(t)}{\Delta t}$ .
Задача о касательной
Пусть функция $latex f$ определена в $latex \delta$-окрестности точки $latex x_0$ и непрерывна в этой окрестности.
Возьмем две точки на графике: $latex M_0 (x_0;y_0)$ и $latex M(x_0+\Delta x;f(x_0+\Delta x))$ .
Уравнение прямой, проходящей через точки $latex M$ и $latex M_0$ имеет вид $latex y-y_0=\frac{\Delta y}{\Delta x}(x-x_0)$, где $latex \Delta y=f(x_0+\Delta x)-f(x_0)$, $latex \Delta x=x-x_0$.
$latex \frac{\Delta y}{\Delta x}= \tan \alpha$
Эту прямую называют секущей, а число $latex k=\tan \alpha$ — угловым коэффициентом секущей.
$latex \Delta x \to 0 => \Delta y \to 0 => MM_0 = \sqrt{(\Delta x)^2+(\Delta y)^2} \to 0$ Определение: Касательной кривой заданной уравнением $latex y=f(x)$ в точке $latex x_0$ называют предельное положение секущей при $latex \Delta x \to 0$.
Если существует $latex \lim\limits_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = k_0$, то существует предельное положение секущей.
Таким образом, если существует $latex \lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}$, то прямая, проходящая через точку $latex M_0$ с угловым коэффициентом $latex k_0$ называется касательной к графику функции $latex y=f(x)$ в точке $latex x_0$ .
В обеих задачах речь идет о пределе отношения приращения функции к приращению аргумента.
Задачи, которые приводят к понятию производной
Лимит времени: 0
Навигация (только номера заданий)
0 из 5 заданий окончено
Вопросы:
1
2
3
4
5
Информация
Тест по теме «Задачи, которые приводят к понятию производной»
Вы уже проходили тест ранее. Вы не можете запустить его снова.
Тест загружается...
Вы должны войти или зарегистрироваться для того, чтобы начать тест.
Вы должны закончить следующие тесты, чтобы начать этот:
Результаты
Правильных ответов: 0 из 5
Ваше время:
Время вышло
Вы набрали 0 из 0 баллов (0)
Средний результат
Ваш результат
Рубрики
Нет рубрики0%
Ваш результат был записан в таблицу лидеров
Загрузка
1
2
3
4
5
С ответом
С отметкой о просмотре
Задание 1 из 5
1.
Какие задачи рассматривались в данной теме?
Правильно
Неправильно
Задание 2 из 5
2.
Скорость точки в момент t называют …
Правильно
Неправильно
Задание 3 из 5
3.
Верно ли следующее утверждение?
В обеих задачах речь идет о пределе отношения приращения аргумента к приращению функции.
Правильно
Неправильно
Нет, наоборот.
Задание 4 из 5
4.
Сопоставьте следующие термины с задачами, в которых они использовались.
Элементы сортировки
Мгновенная скорость
Угловой коэффициент секущей
Ускорение
Задача о скорости
Задача о касательной
Не использовался
Правильно
Неправильно
Задание 5 из 5
5.
Вопрос на знание задач
В задаче о касательной число k=tan α называют (угловым)(коэффициентом) касательной.
Правильно
Неправильно
Источники:
Лысенко З.М. Конспект лекций по курсу математического анализа. (тема «Дифференциальное вычисление функций с одной переменной»).