Бесконечно малая функция в сравнении с другой

Определение:

Если в некоторой проколотой окрестности точки latexx0 определены функции latexf,g и latexα, такие, что имеют место соотношения latexf(x)=g(x)α(x),limxx0α(x)=0, то функцию latexf называют бесконечно малой функцией в сравнении с latexg при latexxx0 и пишут latexf=o(g)xx0;f(x)=o(g(x))xx0 .

Замечание:

Если latexxϵUδ(x0):g(x)0, то latexlimxx0f(x)g(x=limxx0α(x)=0 .

Примеры:

latexx2=o(x4)x, т.к. latexlimxx2x4=limx1x2=0

latexlimxsinxx=0:sinx=o(x)x
latexlimxarctanxx=0:arctanx=o(x)x.

Определение:

  • В случае, когда в записи latexf=o(g)xx0   latexg — бесконечно малая функция, говорят, что latexfбесконечно малая функция более высокого порядка малости, чем latexg, latexgбесконечно малая функция более низкого порядка малости, чем latexf.
  • В случае, когда в записи latexlimxx0f(x)g(x)=a,a<,a0, latexf и latexg — бесконечно малые функции при latexxx0, говорят, что latexf и latexg являются бесконечно малыми функциями одного порядка малости.
  • В случае, когда в записи latexlimxx0f(x)gm(x)=a,a<,a0  latexg — бесконечно малая функция, говорят, что бесконечно малая функция latexf имеет latexm-й порядок малости относительно функции latexg.

Примеры:

latexx2=o(x)x0, т.к. latexlimx0x2x=limx0x=0. latexx2 — бесконечно малая функция более высокого порядка малости, чем latexx;
latexx3sin1x=o(x)x0; т.к. latexlimx0x3sin1xx=limx0x2sin1x=0 (т.к. latexsin1x — ограниченная функция). latexx3sin1x — функция более высокого порядка малости, чем latexx;
latextan2x=o(x)x0, т.к. latexlimx0tan2xx=limx0tanx=0. latextan2x — бесконечно малая функция более высокого порядка малости, чем latexx;
latexlimx0tanxx=1. Функции latextanx и latexx являются бесконечно малыми функциями одного порядка малости.
latexlimx0tan6xx6=1. latextan6x имеет 6-й порядок малости относительно latexx.

Бесконечно малая функция в сравнении с другой

Тест по теме «Бесконечно большая функция в сравнении с другой»

Источники:

  1. Лысенко З.М. Конспект лекций по курсу математического анализа. (тема «Непрерывные функции»).
  2. Википедия, статья «Бесконечно малая и бесконечно большая»

Рекомендуемая к прочтению литература:

Интегрирование рациональных функций

Неопределенный интеграл от рациональной функции всегда можно «взять», т.е. представить в виде элементарных функций.

Рациональной функцией называется отношение двух многочленов.

P(x)Q(x)=S+˜P(x)Q(x),

где latexS — «целая часть» (многочлен).

deg(˜P(x))<deg(Q(x))

Нам понадобиться умение разлагать многочлен на простые множители.

Qn(x)=C(xa1)α1(xa2)α2(xak)αk(x2+p1x+q1)β1(x2+psx+qs)βs

Если m<n, то:

Pm(x)Qn(x)=Aα11(xa1)α1+A(α11)1(xa1)α11++A(1)1(xa1)++Aαkk(xak)αk+A(αk1)k(xak)αk1+

+A(1)kxak+Bβ11x+Dβ11(x2+p1x+q1)β1+B(β11)1+D(β11)1(x2+p1x+q1)β11+
+B(1)1x+D1+D(1)1(x2+p1x+q1)++Bβssx+D(s)s(x2+psx+qs)βs++B(1)sx+D(1)s(x2+psx+qs).

Таким образом правильная рациональная дробь представляется в виде суммы простых дробей вида:

A(xα)r,rϵNиBx+D(x2+px+q)k,kϵN

r=1:Axαdx=Ad(xα)xα=Aln|xα|+C

r1:A(xα)rdx=A(xα)rd(xα)=A(xα)r+1r+1+C

Обозначим Ik=Bx+D(x2+px+q)kdx

x2+px+q=(x+p2)2+(qp24)

p24qp24

dx=qp24=a,x+p2=t

Ik=B(tp2)+D(t2+a2)kdt=Btdt(t2+a2)k+B(p2)+Ddt(t2+a2)k

Пусть I1k=Btdt(t2+a2)kI2k=dt(t2+a2)k

k>1:  I1k=tdt(t2+a2)k=12(t2+a2)kd(t2+a2)=

=12(t2+a2)k+1k+1+C=12(k+1)(x2+px+q)k1+C

k=1:  I11=tdtt2+a2=12d(t2+a2)t2+a2=12ln|t2+a2|+C

В случае k>1 интеграл «берем» по рекурентной формуле, доказанной выше.

k=1:  I21=dtt2+a2=1aarctan(ta)+C=1aarctan(x+p2a)+C

Пример 1

Вычислить интеграл 2x+3x29dx.

Решение

Спойлер

Пример 2

Вычислить интеграл x22x+1dx

Решение

Спойлер

Литература:

  • Г.М. Фихтенгольц, Курс дифференциального и интегрально исчисления,Том 2, „Наука“, Москва 1970, стр. 36.
  • Лысенко З.М. Конспект лекций по математическому анализу, семестр 1, О.:2012.
  • Интегрирование рациональных фунций http://www.math24.ru/

    Интегрирование рациональных функций

    Интегрирование рациональных функций

    Таблица лучших: Интегрирование рациональных функций

    максимум из 6 баллов
    Место Имя Записано Баллы Результат
    Таблица загружается
    Нет данных

Различные типы пределов: односторонние конечные пределы

Определения

Односторонний предел по Коши

Число [latex]A^{‘}[/latex] называют левосторонним пределом функции [latex]f(x)[/latex] в точке [latex]a:[/latex]

[latex]A^{‘}=\lim\limits_{x\rightarrow a-0} f(x),[/latex]

если

[latex]\forall \varepsilon >0\: \: \exists\delta _{\varepsilon }>0\: \:\forall x:a-\delta _{\varepsilon }<x<a:|f(x)-A^{‘}|<\varepsilon[/latex]

Аналогично, число [latex]A^{»}[/latex] называют правосторонним пределом функции [latex]f(x)[/latex] в точке [latex]a:[/latex]

[latex]A^{»}=\lim\limits_{x\rightarrow a+0}f(x),[/latex]

если

[latex]\forall \varepsilon >0\: \: \exists\delta _{\varepsilon }>0\: \:\forall x:a<x<a+\delta _{\varepsilon }:|f(x)-A^{»}|<\varepsilon[/latex]

Односторонний предел по Гейне

Число [latex]A^{‘}[/latex] называют левосторонним пределом функции [latex]f(x)[/latex] в точке [latex]a:[/latex]

[latex]A^{‘}=\lim\limits_{x\rightarrow a-0} f(x),[/latex]

если

[latex]\forall \left \{ x_{n} \right \}_{n=1 }^{\infty }:(\forall k \in \mathbb{N}:x_{k}

Аналогично, число [latex]A^{»}[/latex] называют правосторонним пределом функции [latex]f(x)[/latex] в точке [latex]a:[/latex]

[latex]A^{»}=\lim\limits_{x\rightarrow a+0}f(x),[/latex]

если

[latex]\forall \left \{ x_{n} \right \}_{n=1 }^{\infty }:(\forall k \in \mathbb{N}:x_{k}>a )\vee \lim\limits_{n\rightarrow \infty}x_{n}=a\Rightarrow \lim\limits_{n\rightarrow \infty}\left \{ f(x_{n}) \right \}_{n=1 }^{\infty }=A^{»}[/latex]

Пределы слева и справа называют односторонними пределами.
Соответственно, функция [latex]f(x)[/latex] называется непрерывной слева (справа) в точке [latex]a[/latex], если

[latex]\exists \lim\limits_{x\rightarrow a-0}f(x)=f(a)\;(\lim\limits_{x\rightarrow a+0}f(x)=f(a))[/latex].

Теорема

Функция [latex]f(x)[/latex] имеет предел в точке [latex]a[/latex] тогда и только тогда, когда существуют равные между собой односторонние пределы в этой точке. В этом случае их общее значение является пределом функции в точке [latex]a.[/latex]

Спойлер

Пример

Дана функция [latex]f(x)=\rm sgn(x):\: \left\{1,x>0;0,x=0;1,x<0.

\right.[/latex]
signx
Выяснить существует ли предел в точке [latex]0.[/latex]

Спойлер

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр. 77-79
  2. Кудрявцев Л.Д., Курс математического анализа, 2003, т.1. стр. 185-189

Тест


Таблица лучших: Односторонние конечные пределы

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных