М1736. Шахматные кони

Задача из журнала «Квант» (2000 год, 4 выпуск)

Условие

Какое наибольшее число коней можно расставить на доске $5\times5$ так, чтобы каждый из них бил ровно двух других?

Решение

Рисунок 1

На рисунке $1$ приведено расположение $16$ коней, удовлетворяющее условию задачи. Покажем, что большее число коней расставить нельзя. Заметим, что количество коней, расположенных на черных клетках, равно количеству коней, расположенных на белых клетках. Значит, если число пустых белых клеток равно $n$, то число пустых черных клеток равно $n+1$.

Рисунок 2

Заметим, что для оптимального расположения коней центральная клетка пуста, так как в противном случае из восьми клеток, которые бьет конь, стоящий на центральном поле, ровно шесть пустых белых. Отсюда $n\geqslant6$, и число коней не превосходит $25-n-(n+1)\leqslant12$.

Рисунок 3

Разобьем белые клетки на четыре группы так, как показано на рисунке $2$ (клетки одной группы отмечены одинаковыми цифрами). Покажем, что для оптимального расположения по крайней мере одна клетка каждой группы пуста, отсюда будет следовать, что $n\geqslant4$ . Предположим противное: например, что на всех клетках группы $3$ стоят кони. Обозначим их буквами $a$, $b$ и $с$ (рис.3). Конь, стоящий на клетке $а$, бьет клетки $f$, $d$ и центральную. Но, как было показано выше, центральная клетка пуста, значит, на клетках $f$ и $d$ стоят кони.

Аналогично можно показать, что на клетках $e$ и $g$ тоже стоят кони. Но тогда конь, стоящий на клетке $c$, бьет четырех коней, расположенных на $d$, $e$, $f$ и $g$, что противоречит условию.

Итак, число пустых белых клеток $n\geqslant4$. Значит, число коней не больше

$25-n-(n+1)\leqslant12$.

Ответ: $16$.

М. Горелов

М1752. Восемь шахматных ладей

Задача из журнала «Квант» (2000 год, 6 выпуск)

Условие

Сколькими способами можно расставить восемь ладей на черных полях шахматной доски так, чтобы они не били друг друга?

Решение

Если не выдвигать ограничений на цвет полей, то $8$ ладей допустимым образом можно расставить $8!$ различными способами; вообще для доски размером $n\times{n}$ число способов расстановки n ладей равно числу перестановок из n элементов, т.е. $n!$.

Но нам нужно учесть ограничение на цвет полей: ладьи расставляются только на черных полях доски. Перекрасим черные поля доски в красный и синий цвета. При этом всякое черное поле, расположенное на нечетной вертикали (но на четной горизонтали), сделаем красным, а всякое черное поле, расположенное на четной вертикали (но на нечетной горизонтали), сделаем синим (см. рисунок). Из $8$ ладей, стоящих допустимым образом на черных полях, $4$ ладьи окажутся на красных полях, а остальные $4$ ладьи – на синих.

Красные поля образуют как бы отдельную шахматную доску размером $4\times4$, поэтому число способов расстановки $4$ ладей на красных полях равно $4! = 24$. То же можно сказать о синих полях.

В результате число способов для допустимых расстановок $8$ ладей равно $24^2.$

Ответ: $24^2$.

В. Произволов

M1459

Игроки A и B по очереди ходят конем на шахматной доске 1994х1994. Игрок А может делать только горизонтальные ходы, т.е. такие, при которых конь перемещается на соседнюю горизонталь. Игроку В разрешены только вертикальные ходы, при которых конь перемещается на соседнюю вертикаль. Игрок А ставит коня на поле, с которого начинается игра, и делает первый ход. При этом запрещено ставить коня на то поле, на котором он уже побывал в данной игре. Проигравшим считается игрок, которому некуда ходить. Докажите, что для игрока А существует выигрышная стратегия.
Первое решение.

Так как число всех возможных позиций в игре конечно, то один из двух игроков обязательно имеет выигрышную стратегию. Если у игрока А нет выигрышной стратегии, то игрок В правильно играя, выигрывает при любом первом ходе А. Докажем, что это невозможно. Для этого организуем две игры на двух досках. На первой доске А делает произвольный первый ход с поля х на поле у. На второй доске А ставит коня на поле у и ждет ответного хода В на первой доске, после чего в точности повторяет ход В на второй доске в качестве своего хода. На второй доске A делает вертикальные ходы, а В горизонтальные. Однако если повернуть доску на 90 °, то игра происходит в точности по правилам условия задачи. Далее игрок В делает горизонтальный ход на второй доске, который повторяется игроком А на первой доске в качестве своего хода и т.д. Заметим, что игрок В не может на второй доске попасть на поле х, так как В всегда ходит на поле одного цвета, отличного от цвета х. В этой двойной игре А всегда имеет возможность сделать очередной ход, если В имеет такую возможность. Поэтому проиграет В вопреки «предположению» что у него есть выигрышная стратегия.

Второе решение.

Выигрышная стратегия для игрока A такова. Он должен вначале игры поставить коня на любую клетку, из которой выходит стрелка (см. рисунок), и сделать ход в направлении, указанном стрелкой. После хода В конь вновь окажется в клетке, из которой выходит стрелка. А вновь движется по стрелке, и так далее. Видно, что у него всегда есть возможность сделать ход, поэтому победа ему гарантирована. При этом он никогда не попадает на клетки, в которых уже побывал.

А.Перлин

М1459