Loading [MathJax]/jax/output/SVG/jax.js

Бесконечно большие последовательности, их свойства и связь с бесконечно малыми последовательностями

Определение

Последовательность latex{xn} называется бесконечно большой, если latexε>0Nε>0nNε|xn|ε, или latexlimnxn=.

Геометрическая интерпретация

Назовем latexε-окрестностью точки latex множество latexE={xR:|x|>ε}.
Введем множества latexE1={xR:x<ε} и latexE2={xR:x>ε}. Назовем эти множества latexε-окрестностями точек latex и latex соответственно. Тогда latexE=E1E2.

E-okr infty

Теорема (связь между бесконечно большими и бесконечно малыми последовательностями)

  • Если latex{xn} — бесконечно большая последовательность, то начиная с некоторого номера latexn определена последовательность latex{1xn}, которая является бесконечно малой.
  • Если все элементы бесконечно малой последовтельности latex{αn} отличны от нуля, то последовательность latex{1αn} — бесконечно большая.

Доказательство.

  • Пусть latex{xn} — бесконечно большая последовательность, т.е. latexε>0Nε>0nNε|xn|ε. Это означает, что при latexnNε все элементы latexxn0, поэтому последовательность latex{1xn} имеет смысл с номера latexNε.
    Пусть latexA — любое положительное число, тогда для числа latex1A latexN1:nN1|1xn|<A, что по определению означает, что последовательность latex{1xn} — бесконечно малая.
  • Второе доказательство проводится аналогично.

Свойства бесконечно больших последовательностей

  1. Сумма бесконечно больших последовательностей одного знака есть бесконечно большая последовательность того же знака.
  2. Сумма бесконечно большой и ограниченной последовательностей есть бесконечно большая последовательность.
  3. Произведение бесконечно больших последовательностей есть бесконечно большая последовательность.
  4. Произведение бесконечно большой последовательности на константу есть бесконечно большая последовательность.

Доказательство.

  1. Пусть latex{xn},{yn} — бесконечно большие последовательности.
    По определению:
    latexε>0N1>0:nN1|xn|ε и latexε>0N2>0:nN2|yn|ε.
    Тогда для последовательности latex{xn+yn}:
    latexε>0N=max{N1,N2}>0:nN|xn+yn|ε, что означает, что последовательность latex{xn+yn} — бесконечно большая.
  2. Пусть последовательность latex{xn} — бесконечно большая, latex{yn} — ограниченная. Тогда по определению latexε>0Nε>0nNε|xn|ε и latexC:nN|yn|<C.
    Рассмотрим latex|xn+yn|:
    latex|xn+yn|=|xn||xn+yn||xn|=|xn||xn+ynxn|=|xn||xnxn+ynxn|=|xn|(1+0)=|xn|ε
    (используются свойства модулей, свойства бесконечно малых последовательностях и теорема о связи между бесконечно большими и бесконечно малыми последовательностями)
    Получили: latexε>0Nε>0nNε|xn+yn|ε, что означает, что последовательность latex{xn+yn} — бесконечно большая.
  3. Доказательство аналогично предыдущему.
  4. Пусть последовательность latex{xn} — бесконечно большая, latexC0 — константа. Тогда по определению latexε>0Nε>0nNε|xn|ε.
    Рассмотрим latex|xnC|:
    latex{xn},{1xn}0 (по теореме о связи между бесконечно большими и бесконечно малыми последовательностями).
    latexC — константа, latex{1C} — также константа, т.е. ограниченная.
    latex{1xnC}={1xn1C}0{xnC}, что означает, что последовательность latex{xnyn} — бесконечно большая.
    (используются свойства бесконечно малых последовательностей и теорема о связи между бесконечно большими и бесконечно малыми последовательностями)

Примеры.

  1. Последовательность latex{n} является бесконечно большой, т.к. latexε0N=[ε]+1:nNn>ε.
  2. Последовательность latex{n2n+1} является бесконечно большой, т.к. latexn2n+1=n1+1n1+0=.
  3. latexn(cosn)2=n1(cosn)2 — бесконечно большая, т.к. latexlimnn=, а latex1(cosn)2 — ограниченная, сохраняющая знак.
  4. latex{n}
    Выберем произвольное число latexε>0:nε;N>ε2. Получили: latexε>0N=[ε2+1]:nNn<ε, т.е. latexlimn(n)=.

Литература

Тест по теме «Бесконечно малые и бесконечно большие последовательности»


Таблица лучших: Бесконечно малые и бесконечно большие последовательности

максимум из 20 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Определение предела по Коши и по Гейне, их эквивалентность

1. Определение предела по Коши и по Гейне

Определение 1.1. (определение по Коши или на языке [latex]\varepsilon — \delta[/latex]):

[latex]A[/latex] — предел функции [latex]f(x)[/latex] в точке [latex]a[/latex] (и пишут limxaf(x)=A), если: [latex]\forall \varepsilon > 0 \exists \delta > 0:\forall x: 0 < |x-a| < \delta \Rightarrow |f(x) — A| < \varepsilon[/latex]
В определении допускается, что [latex]x \neq a[/latex], то есть [latex]a[/latex] может не принадлежать области определения функции.

Определение 1.2. (определение по Гейне):

[latex]A[/latex] называется пределом функции [latex]f(x)[/latex] в точке [latex]a[/latex], если [latex]\forall \left \{ x_{n} \right \}\rightarrow a[/latex], [latex]x_n\ne a[/latex] то есть [latex]\lim\limits_{n\rightarrow \infty } x_{n} = a[/latex], соответствующая последовательность значений [latex]{f(x_{n})} \rightarrow A[/latex], то есть [latex]\lim\limits_{n\rightarrow \infty } f(x_{n}) = A[/latex].

Замечание 1.1.

Из определения предела функции по Гейне следует, что функция не может иметь в точке два разные предела.

Замечание 1.2.

Понятие предела функции в точке есть локальное понятие: существование и значение предела полностью определяется значениями функции в как угодно малой окрестности этой точки.

Замечание 1.3.

[latex]\forall x:0<|x-a|<\delta[/latex]

Данную запись в определении можно сформулировать иначе: точка [latex]x[/latex] принадлежит проколотой [latex]\delta[/latex]-окрестности точки [latex]a[/latex]([latex]x\in \dot{U_{\delta }}(a)[/latex])

2. Эквивалентность определений

Пусть число [latex]A[/latex] является пределом функции [latex]f(x)[/latex] в точке [latex]a[/latex] по Коши. Выберем произвольную подходящую последовательность [latex]x_{n}[/latex] , [latex]n \in N[/latex], то есть такую, для которой [latex]\lim\limits_{n\rightarrow \infty } x_{n} = a[/latex]. Покажем, что [latex]A[/latex] является пределом по Гейне.

Зададим произвольное [latex]\varepsilon > 0[/latex] и укажем для него такое [latex]\delta > 0[/latex], что для всех [latex]x[/latex] из условия [latex]0 < |x-a| < \delta[/latex] следует неравенство [latex]|f(x)-A | < \varepsilon[/latex]. В силу того, что [latex]\lim\limits_{n\rightarrow \infty } x_{n} = a[/latex], для [latex]\delta > 0[/latex] найдётся такой номер [latex]n_{\delta }\in N[/latex], что [latex]\forall n\geq n_{\delta }[/latex] будет выполняться неравенство [latex]|f(x_{n})-A| < \varepsilon[/latex], то есть [latex]\lim\limits_{n\rightarrow \infty } f(x_{n}) = A[/latex].

Докажем теперь обратное утверждение: предположим, что [latex]\lim\limits_{x\rightarrow a } f(x) = A[/latex] по Гейне, и покажем, что число [latex]A[/latex] является пределом функции [latex]f(x)[/latex] в точке [latex]a[/latex] по Коши. Предположим, что это неверно, то есть: [latex]\exists \varepsilon_{0} > 0 \forall \delta > 0 :\exists x_{\delta }:0<|x_{\delta }-a|<\delta \Rightarrow |f(x_{\delta })-A|\geq \varepsilon[/latex]. В качестве [latex]\delta[/latex] рассмотрим [latex]\delta = \frac{1}{n}[/latex], а соответствующие значения [latex]x_{\delta }[/latex] будем обозначать [latex]x_{n}[/latex]. Тогда при любом [latex]n\in N[/latex] выполняются условия [latex]|x_{n}-a|<\frac{1}{n}[/latex] и [latex]|f(x_{n})- A | \geq \varepsilon[/latex]. Отсюда следует, что последовательность x_{n} является подходящей, но число [latex]A[/latex] не является пределом функции [latex]f(x)[/latex] в точке [latex]a[/latex]. Получили противоречие.

3. Примеры

Пример 3.1.

а) [latex]\lim\limits_{x\rightarrow 2 } x^{2} = 4[/latex]

[latex]\forall \varepsilon >0\exists \delta >0:\forall x:0<|x-2|<\delta \Rightarrow |x^{2}-4|<\varepsilon[/latex][latex]|x^{2}-4|=|(x-2)(x+2)|=|x-2|\cdot|x+2|<5\delta <\varepsilon \Rightarrow 0<\delta <\frac{\varepsilon }{5}[/latex] , например [latex]\delta =\frac{\varepsilon }{6}[/latex]

б) [latex]\forall\left \{ x_{n} \right \}\rightarrow 2[/latex]                                                                                 [latex]\lim\limits_{n\rightarrow 2 } f(x_{n}) =\lim\limits_{n\rightarrow 2} x_{n}^{2}=4[/latex]

Пример 3.2.

Доказать, что [latex]f(x)=\sin \frac{1}{x}[/latex] не имеет предела в точке 0.

[latex]\exists \left \{ {x_{n}}’ \right \}\rightarrow 0[/latex] [latex]\exists \left \{ {x_{n}}» \right \}\rightarrow 0[/latex]

[latex]\left \{ f({x_{n}}’) \right \}\rightarrow A_{1}[/latex] [latex]\left \{ f({x_{n}}») \right \}\rightarrow A_{2}[/latex]

[latex]{x_{n}}’:\sin \frac{1}{{x_{n}}’}=0\Leftrightarrow \frac{1}{{x_{n}}’}=\pi n\Rightarrow {x_{n}}’ = \frac{1}{\pi n}\xrightarrow[ n\neq 0]{n\rightarrow \infty}0[/latex]                                                            [latex]{x_{n}}’= \frac{1}{\pi n} \rightarrow 0:f({x_{n}}’)=0\rightarrow 0[/latex]                                                                                                [latex]{x_{n}}»:\sin \frac{1}{{x_{n}}»}=1\Leftrightarrow \frac{1}{{x_{n}}»}=\frac{\pi }{2}+2\pi n\Rightarrow {x_{n}}» = \frac{1}{\frac{\pi }{2}+2\pi n}\xrightarrow[n\neq 0]{n\rightarrow \infty }0[/latex]                  [latex]{x_{n}}»= \frac{1}{\frac{\pi }{2}+2\pi n} \rightarrow 0:f({x_{n}}»)=1\rightarrow 1[/latex]

Вывод: последовательность по Гейне не имеет предела.

Литература

 Тест

Тест по теме Определение предела по Коши и по Гейне, их эквивалентность.

Желаем удачи!

Таблица лучших: Предел последовательности

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных
 

 

Первый замечательный предел

sin x xПервым замечательным пределом называется равенство

[latex] \lim_{x \to 0}\frac{\sin\ x}{x}=1[/latex] ,

где величина [latex]x[/latex] выражена в радианах.

 

 

Спойлер

Примеры

Замечание: примеры для данной темы желательно разбирать только после прочтения материала о замене переменной при вычислении предела

Спойлер
Спойлер
Спойлер

Тест

Тест на использование первого замечательно предела

Источники

Тер-Крикоров A.M., Шабунин М.И. Курс математического анализа: Учеб. пособие для вузов.  3-е изд., исправл. — М.: ФИЗМАТ-ЛИТ, 2001.(стр. 97-98)

В. И. Коляда, А. А. Кореновский. Курс лекций по математическому анализу. К93:в 2-х ч. Ч. 1. — Одесса: Астропринт, 2009. (стр. 60-62)  

Б.П.Демидович. Cборник задач и упражнений по математическому анализу (стр 58-60)

Определение интеграла с переменным верхним пределом

Пусть функция latexf интегрируема на отрезке latex[a,b]. Обозначим

latexF(x)=xaf(t)dt   latex(x[a,b]).

Площадь под графиком f(t) равна значению F(x)
Заштрихованная область под графиком функции latexf(t) это значение нашей функции latexF(x). Легко заметить, если latexx будет стремиться к latexb или latexa то заштрихованная площадь увеличивается или уменьшается соответственно, следовательно и значение функции latexF(x) также будет изменяться.

По свойству аддитивности интегрируемых функций, latexf интегрируема на latex[a,x] для любого latexx[a,b].
Поэтому функция latexF определена на latex[a,b]. Заметим, что latexF(a)=0. Функцию latexF называют интегралом с переменным верхним пределом.

Нас в дальнейшем будут интересовать две характеристики этой функции, а именно непрерывность и дифференцируемость

Понятие интеграла с переменным верхним пределом нам будет необходимо при выведении основной формулы дифферендицального исчисления.

Литература :

Определение интеграла с переменным верхним пределом

Этот тест проверит ваши знания по теме «Определение интеграла с переменным верхним пределом»


Таблица лучших: Определение интеграла с переменным верхним пределом

максимум из 7 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Различные типы пределов: односторонние конечные пределы

Определения

Односторонний предел по Коши

Число [latex]A^{‘}[/latex] называют левосторонним пределом функции [latex]f(x)[/latex] в точке [latex]a:[/latex]

[latex]A^{‘}=\lim\limits_{x\rightarrow a-0} f(x),[/latex]

если

[latex]\forall \varepsilon >0\: \: \exists\delta _{\varepsilon }>0\: \:\forall x:a-\delta _{\varepsilon }<x<a:|f(x)-A^{‘}|<\varepsilon[/latex]

Аналогично, число [latex]A^{»}[/latex] называют правосторонним пределом функции [latex]f(x)[/latex] в точке [latex]a:[/latex]

[latex]A^{»}=\lim\limits_{x\rightarrow a+0}f(x),[/latex]

если

[latex]\forall \varepsilon >0\: \: \exists\delta _{\varepsilon }>0\: \:\forall x:a<x<a+\delta _{\varepsilon }:|f(x)-A^{»}|<\varepsilon[/latex]

Односторонний предел по Гейне

Число [latex]A^{‘}[/latex] называют левосторонним пределом функции [latex]f(x)[/latex] в точке [latex]a:[/latex]

[latex]A^{‘}=\lim\limits_{x\rightarrow a-0} f(x),[/latex]

если

[latex]\forall \left \{ x_{n} \right \}_{n=1 }^{\infty }:(\forall k \in \mathbb{N}:x_{k}

Аналогично, число [latex]A^{»}[/latex] называют правосторонним пределом функции [latex]f(x)[/latex] в точке [latex]a:[/latex]

[latex]A^{»}=\lim\limits_{x\rightarrow a+0}f(x),[/latex]

если

[latex]\forall \left \{ x_{n} \right \}_{n=1 }^{\infty }:(\forall k \in \mathbb{N}:x_{k}>a )\vee \lim\limits_{n\rightarrow \infty}x_{n}=a\Rightarrow \lim\limits_{n\rightarrow \infty}\left \{ f(x_{n}) \right \}_{n=1 }^{\infty }=A^{»}[/latex]

Пределы слева и справа называют односторонними пределами.
Соответственно, функция [latex]f(x)[/latex] называется непрерывной слева (справа) в точке [latex]a[/latex], если

[latex]\exists \lim\limits_{x\rightarrow a-0}f(x)=f(a)\;(\lim\limits_{x\rightarrow a+0}f(x)=f(a))[/latex].

Теорема

Функция [latex]f(x)[/latex] имеет предел в точке [latex]a[/latex] тогда и только тогда, когда существуют равные между собой односторонние пределы в этой точке. В этом случае их общее значение является пределом функции в точке [latex]a.[/latex]

Спойлер

Пример

Дана функция [latex]f(x)=\rm sgn(x):\: \left\{1,x>0;0,x=0;1,x<0.\right.[/latex]
signx
Выяснить существует ли предел в точке [latex]0.[/latex]

Спойлер

Литература

  1. Тер-Киркоров А.М., Шабунин М.И., Курс математического анализа, физмат-лит, 2001. стр. 77-79
  2. Кудрявцев Л.Д., Курс математического анализа, 2003, т.1. стр. 185-189

Тест


Таблица лучших: Односторонние конечные пределы

максимум из 10 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных