Векторное произведение векторов, свойства, координатное представление

Векторное произведение векторов

Определение. Если наблюдатель, идя против часовой стрелке сначала встречает вектор $\vec {c},$ затем встречает вектор $\vec {a},$ затем вектор $\vec {b},$ то тройка векторов $\left\{\vec {a}, \vec {b}, \vec {c}\right\}$ называется правой (рис. 1), если же наблюдатель шел по часовой стрелке и встретил вектора в той же последовательности, то тогда тройка векторов $\left\{\vec {a}, \vec {b}, \vec {c}\right\}$ называется левой.

Определение с использованием руки (мнемоническое правило). Если обозначить указательный палец как $\vec {a},$ средний палец как $\vec {b},$ а большой палец как их произведение, т.е. $\vec {c},$ то расположение пальцев на правой руке является правой тройкой векторов, а на левой руке левой тройкой векторов.

На рисунке 1 показано как будет выглядеть правая тройка векторов.

рис. 1

Определение. Векторным произведением неколлинеарных векторов $\vec {a}$ и $\vec {b}$ называется вектор $\vec {c},$ такой, что

  1. $\left|\vec {c}\right| = \left|\vec {a}\right| \cdot \left|\vec {b}\right| \cdot \sin \varphi,$ где $\varphi$ — угол между векторами $\vec {a}$ и $\vec {b};$
  2. Вектор $\vec {c}$ ортогонален вектору $\vec {a}$ и вектору $\vec {b};$
  3. Тройка векторов $\left\{\vec {a}, \vec {b}, \vec {c}\right\}$ правая.

Векторное произведение $\vec {a}$ и $\vec {b}$ обозначается как $\left[\vec {a}, \vec{b}\right].$

Свойства векторного произведения

  • $\left[\vec{a}, \vec{b}\right] = -\left[\vec{b}, \vec{a}\right]$ (антикоммутативность).

    Смотря на определение видно, что произведения $\vec {a} \times \vec {b}$ и $\vec {b} \times \vec {a}$ имеют одинаковую длину. Так же они имеют противоположное направление из-за того, что $\sin \varphi$ нечетен.

  • $\,\left[\lambda \vec{a}, \vec{b}\right] = \lambda\left[\vec{a}, \vec{b}\right]$ (ассоциативность).

    Докажем данное св-во для случая $\lambda > 0,$ а для $\lambda < 0,$ доказательство проводится аналогично. Легко заметить, что при $\lambda > 0$ вектор $\lambda \left(\vec {a} \times \vec {b}\right)$ имеет то же направление, что и $\vec {a} \times \vec {b}$ (обратное при $\lambda < 0$). Теперь нам надо доказать равенство длин этих произведений. $$\left|\left(\vec{a} \times \vec{b}\right)\right| = \left|\lambda\right| \cdot \left|\vec{a} \times \vec{b}\right| = \lambda \cdot \left|\vec{a}\right| \cdot \left|\vec{b}\right| \cdot \sin \left(\vec{a}; \vec{b}\right),$$ $$\left|\left(\lambda \vec{a}\right) \times \vec{b}\right| = \left|\lambda \vec{a}\right| \cdot \left|\vec{b}\right| \cdot \sin \left(\vec{a}; \vec{b}\right) = \lambda \left|\vec{a}\right| \cdot \left|\vec{b}\right| \cdot \sin \left(\vec{a}; \vec{b}\right).$$

  • $\,\vec{a} \times \left(\vec{b} + \vec{c}\right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ (дистрибутивность).
  • Условие коллинеарности векторов.

    Для того, чтобы два ненулевых вектора были коллинеарны, необходимо и достаточно, чтобы их векторное произведение равнялось нулевому вектору. $$\vec{a} \| \vec{b}, \quad \left| \vec{a}\right| \neq 0, \quad \left|\vec{b}\right| \neq 0 \Longleftrightarrow \vec{a} \times \vec{b} = \vec{0}.$$

    Необходимость. Очевидно, что если вектора $\vec {a}$ и $\vec {b}$ коллинеарны, то синус угла между ними равен нулю, отсюда видим, что по определению, векторное произведение равно нулю.
    Достаточность. Теперь докажем в обратную сторону: если $\vec{a} \times \vec{b} = \vec{0},$ то $\left|\vec{a}\right| \cdot \left|\vec{b}\right| \cdot \sin \left(\vec{a}; \vec{b}\right) = 0 \Rightarrow$ один из сомножителей равен нулю. Так как ни один из векторов не равен нулю, то $\sin \left(\vec{a}; \vec{b}\right) = 0,$ т.е. либо $\widehat {\left(\vec{a}; \vec{b}\right)} = 0,$ либо $\widehat {\left(\vec{a}; \vec{b}\right)} = \pi$ и значит $\vec{a} \| \vec{b}.$

    Следствие: векторный квадрат равен нулевому вектору.

  • Геометрический смысл векторного произведения.

    Модуль векторного произведения равен площади параллелограмма построенного на перемножаемых векторах (рис. 2).

    Если посмотреть векторного произведения $\left|\vec{a} \times \vec{b}\right| = \left|\vec{a}\right| \cdot \left|\vec{b}\right| \cdot \sin \left(\vec{a}; \vec{b}\right),$ то мы видим общеизвестную формулу площади параллелограмма со сторонами, длины которых равны $\left|\vec {a}\right|$ и $\left|\vec {b}\right|.$

    рис. 2

Координатное представление векторного произведения

Для того, чтобы выразить результат векторного произведения векторов $\vec {a} = \left(a_{x}, a_{y}, a_{z}\right)$ и $\vec {b} = \left(b_{x}, b_{y}, b_{z}\right)$ в координатах надо сначала найти все парные векторные произведения единичных векторов $\vec {i}, \vec {j}, \vec {k}.$ $$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = 0,$$ $$\vec{i} \times \vec{j} = \vec{k}, \quad \vec{j} \times \vec{k} = \vec{i}, \quad \vec{k} \times \vec{i} = \vec{j},$$ $$\vec{j} \times \vec{i} = -\vec{k}, \quad \vec{k} \times \vec{j} = -\vec{i}, \quad \vec{i} \times \vec{k} = -\vec{j}.$$ $$\vec {a} \times \vec {b} = \left(a_{x} \cdot \vec {i} + a_{y} \cdot \vec {j} + a_{z} \cdot \vec {k} \right) \times \left(b_{x} \cdot \vec {i} + b_{y} \cdot \vec {j} + b_{z} \cdot \vec {k} \right) = $$ $$= \, a_{x} b_{y} \cdot \vec {i} \times \vec {j} + a_{x} b_{z} \cdot \vec {i} \times \vec {k} + a_{y} b_{x} \cdot \vec {j} \times \vec {i} + a_{y} b_{z} \cdot \vec {j} \times \vec {k} + a_{z} b_{x} \cdot \vec {k} \times \vec {i} + \,$$ $$+ \, a_{z} b_{y} \cdot \vec {k} \times \vec {j} = a_{x} b_{y} \cdot \vec {k} — a_{x} b_{z} \cdot \vec {j} — a_{y} b_{x} \cdot \vec {k} + a_{y} b_{z} \cdot \vec {i} + a_{z} b_{x} \cdot \vec {j} — \,$$ $$- \, a_{z} b_{v} \cdot \vec {i} = \left(a_{y} b_{z} — a_{z} b_{y}\right) \vec{i} — \left(a_{x} b_{z} — a_{z} b_{x}\right) \vec{j} + \left(a_{x} b_{y} — a_{y} b_{x}\right) \vec{k}.$$
Легко заметить, что разности, стоящие в скобочках, равны определителям второго порядка. $$\vec{a} \times \vec{b} = \left|
\begin {matrix}
a_{y} & a_{z} \\
b_{y} & b_{z}
\end {matrix}
\right| \cdot \vec{i} \, — \, \left|
\begin {matrix}
a_{x} & a_{z} \\
b_{x} & b_{z}
\end{matrix}
\right| \cdot \vec{j} + \left|
\begin{matrix}
a_{x} & a_{y} \\
b_{x} & b_{y}
\end{matrix}
\right| \cdot \vec{k}.$$ Итак, видим, что справа от знака равно записано разложение определителя третьего порядка по первой строке. $$\vec{a} \times \vec{b} = \left|
\begin{matrix}
\vec{i} & \vec{j} & \vec{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{matrix}
\right|.$$ То есть $\vec {c} = \left(\left|
\begin {matrix}
a_{y} & a_{z} \\
b_{y} & b_{z}
\end {matrix}
\right|, — \left|
\begin {matrix}
a_{x} & a_{z} \\
b_{x} & b_{z}
\end{matrix}
\right|, \left|
\begin {matrix}
a_{x} & a_{y} \\
b_{x} & b_{y}
\end{matrix}
\right|\right).$

Примеры решения задач

  1. Найти модуль векторного произведения векторов $\vec {a} = \left(0, 3, 4\right)$ и $\vec {b} = \left(5, 12, 0\right), \, \varphi = \frac{\pi}{3}.$
    Решение

    Для того, чтобы использовать формулу вычисления модуля векторного произведения $|\vec {c}| = |\vec {a}| |\vec {b}| \sin \varphi$ надо знать длины наших векторов, для этого воспользуемся формулой $|\vec {f}| = \sqrt{\left(f_{x}\right)^2 + \left(f_{y}\right)^2 + \left(f_{z}\right)^2}.$ Тогда $|\vec {a}| = \sqrt{0 + 9 + 16} = 5$ и $|\vec {b}| = \sqrt{25 + 144 + 0} = 13.$ Тогда $\left|\vec {c}\right| = 5 \cdot 13 \cdot \sin \left(\frac {\pi}{3}\right) = 80 \cdot \frac {\sqrt{3}}{2} = 40\sqrt {3}.$
    Ответ: $40\sqrt {3}.$

    [свернуть]

  2. Найти координаты вектора $\vec {c},$ который является результатом векторного произведения векторов $\vec {a} = \left(1, -2, 3\right)$ и $\vec {b} = \left(3, 4, 6\right).$
    Решение

    Разложим определитель трехмерной матрицы, в которой первая строка это $i, j, k,$ вторая строка это координаты вектора $\vec {a},$ а третья строка — координаты вектора $\vec {b}$ по первой строчке. То есть $$\left|
    \begin{matrix}
    \vec{i} & \vec{j} & \vec{k} \\
    1 & -2 & 3 \\
    3 & 4 & 6
    \end{matrix}
    \right| = \vec {i} \cdot \left|
    \begin {matrix}
    -2 & 3 \\
    4 & 6
    \end {matrix}
    \right| — \vec {j} \cdot \left|
    \begin {matrix}
    1 & 3 \\
    3 & 6
    \end {matrix}
    \right| + \vec {k} \cdot \left|
    \begin {matrix}
    1 & -2 \\
    3 & 4
    \end {matrix}
    \right| =$$ $$= \, (-24) \cdot \vec {i} \, — (-3) \cdot \vec{j} + 10 \cdot \vec {k} = (-24) \cdot \vec {i} +3 \cdot \vec{j} + 10 \cdot \vec {k}.$$ Отсюда видим, что $\vec {c} = (-24, 3, 10).$

    [свернуть]
  3. Найти длины и координаты всех векторов получившихся в результате векторного умножения векторов $\vec {a} = (2, 3, 4), \vec {b} = (-1, 3, -7), \vec {c} = (0, 0, 3)$ зная, что $\sin \left(\vec {a}, \vec {b}\right) = \frac {1}{2}, \sin \left(\vec {a}, \vec {c}\right) = \frac {1}{3}, \sin \left(\vec {b}, \vec {c}\right) = \frac {5}{6}.$
    Решение

    Для начала найдем модули всех заданных векторов, для этого воспользуемся формулой нахождения модуля вектора из примера 1 $|\vec {a}| = \sqrt {4 + 9 + 16} = \sqrt {29}, \left|\vec {b}\right| = \sqrt {1 + 9 + 49} = \sqrt {59}, \left|\vec {c}\right| = \sqrt {0 + 0 + 9} = 3.$ Теперь будем решать задачу для пары векторов $\vec {a}$ и $\vec {b}.$ $$\vec {a} \times \vec {b} = \left|
    \begin{matrix}
    \vec{i} & \vec{j} & \vec{k} \\
    2 & 3 & 4 \\
    -1 & 3 & -7
    \end{matrix}
    \right| = \vec {i} \cdot \left|
    \begin {matrix}
    3 & 4 \\
    3 & -7
    \end {matrix}
    \right| — \vec {j} \cdot \left|
    \begin {matrix}
    2 & 4 \\
    -1 & -7
    \end {matrix}
    \right| +$$ $$+ \, \vec {k} \cdot \left|
    \begin {matrix}
    2 & 3 \\
    -1 & 3
    \end {matrix}
    \right| = (-40) \cdot \vec {i} \, — (-10) \cdot \vec {j} + 9 \cdot \vec {k} = (-40) \cdot \vec {i} + 10 \cdot \vec {j} + 9 \cdot \vec {k},$$ т.е. координаты результата равны $(-40, 10, 9),$ теперь найдем модуль данного произведения $\left|\vec {a} \times \vec {b}\right| = \sqrt {29} \cdot \sqrt {59} \cdot \frac {1}{2} =$ $= \, \frac {\sqrt {1711}}{2}.$ Теперь проделаем тоже самое для пары $\vec {a}$ и $\vec {c}.$ $$\vec {a} \times \vec {c} = \left|
    \begin{matrix}
    \vec{i} & \vec{j} & \vec{k} \\
    2 & 3 & 4 \\
    0 & 0 & 3
    \end{matrix}
    \right| = \vec {i} \cdot \left|
    \begin {matrix}
    3 & 4 \\
    0 & 3
    \end {matrix}
    \right| — \vec {j} \cdot \left|
    \begin {matrix}
    2 & 4 \\
    0 & 3
    \end {matrix}
    \right| +$$ $$+ \, \vec {k} \cdot \left|
    \begin {matrix}
    2 & 3 \\
    0 & 0
    \end {matrix}
    \right| = 9 \cdot \vec {i} \, — \, 6 \cdot \vec {j} + 0 \cdot \vec {k} = 9 \cdot \vec {i} \, — \, 6 \cdot \vec {j},$$ координаты равны $(9, -6, 0)$ теперь найдем модуль данного произведения $\left|\vec {a} \times \vec {c}\right| = \sqrt {29} \cdot 3 \cdot \frac {1}{3} =$ $= \, \frac {3 \sqrt {29}}{3} = \sqrt {29}.$ И наконец, пара $\vec {b}$ и $\vec {c}.$ $$\vec {b} \times \vec {c} = \left|
    \begin{matrix}
    \vec{i} & \vec{j} & \vec{k} \\
    -1 & 3 & 7 \\
    0 & 0 & 3
    \end{matrix}
    \right| = \vec {i} \cdot \left|
    \begin {matrix}
    3 & 7 \\
    0 & 3
    \end {matrix}
    \right| — \vec {j} \cdot \left|
    \begin {matrix}
    -1 & 7 \\
    0 & 3
    \end {matrix}
    \right| +$$ $$+ \, \vec {k} \cdot \left|
    \begin {matrix}
    -1 & 3 \\
    0 & 0
    \end {matrix}
    \right| = 9 \cdot \vec {i} \, — \, (-3) \cdot \vec {j} + 0 \cdot \vec {k} = 9 \cdot \vec {i} + 3 \cdot \vec {j},$$ координаты равны $(9, 3, 0)$ теперь найдем модуль данного произведения $\left|\vec {b} \times \vec {c}\right| = \sqrt {59} \cdot 3 \cdot \frac {5}{6} =$ $= \, \frac {3 \cdot 5 \sqrt {59}}{6} = \frac {5 \sqrt {59}}{2}.$ Итак, задача решена.

    [свернуть]
  4. Найти площадь треугольника, у которого заданы координаты его вершин. $A = (1, 2, 3), B = (5, 11 -2), C = (3, -6, 4).$
    Решение

    Чтобы решить эту задачу достаточно найти площадь параллелограмма, построенного на каких-то двух сторонах треугольника. Пусть этими сторонами будут $AB$ и $AC.$ Для начала надо найти координаты этих векторов $\vec {AB} = (5 — 1, 11 — 2, -2 — 3) = (4, 9, 5), \vec {AC} = (3 — 1, -6 — 2,4 — 3) =$ $= \, (2, -8, -1).$ Найдем координаты вектора, полученного в результате векторного умножения сторон треугольника $$\vec {a} = \left|
    \begin{matrix}
    \vec{i} & \vec{j} & \vec{k} \\
    4 & 9 & 5 \\
    2 & -8 & -1
    \end{matrix}
    \right| = \vec {i} \cdot \left|
    \begin {matrix}
    9 & 5 \\
    -8 & -1
    \end {matrix}
    \right| — \vec {j} \cdot \left|
    \begin {matrix}
    4 & 5 \\
    2 & -1
    \end {matrix}
    \right| +$$ $$+ \, \vec {k} \cdot \left|
    \begin {matrix}
    4 & 9 \\
    -8 & -1
    \end {matrix}
    \right| = 31 \cdot \vec {i} \, — \, (-14) \cdot \vec {j} + 68 \cdot \vec {k} = 31 \cdot \vec {i} + 14 \cdot \vec {j} + 68 \cdot \vec {k}.$$ Как мы уже знаем, координатами вектора $\vec {a}$ будет $(31, 14, 68).$ Осталось найти модуль полученного вектора по уже известной формуле $\left|\vec {a}\right| = \sqrt {961 + 196 + 4624} = \sqrt {5781}$ и поделить его на $2, S = \frac {\sqrt {5781}}{2}.$

    [свернуть]
  5. Найти площадь параллелограмма, построенного на векторах $\vec {a} = (1, -3, 4), \vec {AB},$ если $A = (3, 8 ,6), B = (2, 4, -7)$ и угол между ними равен $\varphi = \frac {\pi}{6}.$
    Решение

    Для начала надо найти вектор $\vec {AB} = (2 — 3, 4 — 8, -7 — 6) =$ $= \, (-1, -4, -13)$ и его модуль $\left|\vec {AB} \right| = \sqrt {1 + 16 + 169} = \sqrt {186}.$ Так же надо найти модуль вектора $\left|\vec {a}\right| = \sqrt {1 + 9 + 16} = \sqrt {26}.$ Теперь воспользуемся определением $\vec {a} \times \vec {AB} = \sqrt {186} \cdot \sqrt {26} \cdot \sin \frac {\pi}{6} = \sqrt {4836} \cdot \frac {1}{2}.$ На данном этапе можем внести $\frac {1}{2}$ под корень и тогда ответом будет $\sqrt {1209}.$

    [свернуть]

Список литературы

  1. Ефимов Н.В.: Краткий курс аналитической геометрии, стр. 154-163
  2. Постников М.М. Аналитическая геометрия, стр 133-134
  3. Личный конспект на основе лекций Белозерова Г.С.

Векторное произведение векторов

Тест для проверки знаний по теме «Векторное произведение векторов»