М1396. Выполняется ли неравенство?

Задача из журнала «Квант» (1993, №5, M1396)

Условие

Докажите, что для любых положительных чисел $a_{k},b_{k} (k=1,2,…,n)$ выполнено неравенство $$\sum\limits_{k=1}^{n}{\frac{a_{k}b_{k}}{a_{k}+b_{k}}}\leq \frac{AB}{A+B}$$где $A=a_{1}+…a_{n}, B=b_{1}+…+b_{n}$.

Первое решение

Доказательство проведем по индукции. Докажем неравенство для $n=2$. Положим $v=a_{1}+b_{1},u=a_{2}+b_{2}$: $$a_{1}b_{1}u^2+(a_{1}b_{1}+a_{2}b_{2})uv+a_{2}b_{2}v^2\leq uv(a_{1}+a_{2})(b_{1}+b_{2})$$ или $$a_{1}b_{1}u^2-(a_{2}b_{1}+a_{1}b_{2})uv+a_{2}b_{2}v^2\leq 0$$Обозначим $t=u/v$. Перепишем неравенство: $$v^2a_{1}b_{1}(t-\frac{b_{2}}{b_{1}})(t-\frac{a_{2}}{a_{1}})\leq 0$$Подставляя $t=(a_{2}+b_{2})/(a_{1}+b_{1})$, приходим к эквивалентному неравенству: $$(b_{2}a_{1}-b_{1}a_{2})(a_{2}b_{1}-a_{1}b_{2})\leq 0$$ или $$-(b_{2}a_{1}-b_{1}a_{2})^2\leq 0$$Неравенство доказано.

Еще одно, геометрическое, доказательство неравенства основано на том, что биссектриса прямого угла треугольника с катетами $a$ и $b$ равна $\sqrt{2}ab/(a+b)$.

Picture one

Пусть, для определенности $b_{2}/a_{2}\geq  b_{1}/a_{1}$. Рассмотрим конфигурацию рисунка 1. Точка пересечения биссектрисы с отрезком $AB$ лежит дальше от вершины угла $O$, чем точка $L$ $(PK/KQ=BP/QA=b_{1}/a_{1})\leq PL/LQ=b_{2}/a_{2})$.

Дадим еще одно доказательство этого неравенства, основанное на исследовании функции $$f(x)=\frac{(x+a_{2})(b_{1}+b_{2})}{x+a_{2}+b_{1}+b_{2}}-\frac{xb_{1}}{x+b_{1}}$$ где $x\geq 0$. Нетрудно проверить, что $$f(0)=\frac{a_{2}(b_{1}+b_{2})}{a_{2}+b_{1}+b_{2}}>\frac{a_{2}b_{2}}{a_{2}+b_{2}}$$ функция $f(x)$ имеет единственный минимум при $x=a_{2}b_{1}/b_{2}$, равный $a_{2}b_{2}/(a_{2}+b_{2});$ $f(x)\rightarrow b_{2}$ при $x\rightarrow +\infty$ (рис. 2). Отсюда легко вывести, что $f(x)\geq a_{2}b_{2}/(a_{2}+b_{2})$ при всех $x\geq 0$. Далее, $$\sum\limits_{k=1}^{n+1}{\frac{a_{k}b_{k}}{a_{k}+b_{k}}}\leq \frac{A’B’}{A’+B’}+\frac{a_{n+1}b_{n+1}}{a_{n+1}+b_{n+1}}\leq \frac{AB}{A+B}$$ где $$A’=\sum\limits_{k=1}^{n}{a_{k}}, B’=\sum\limits_{k=1}^{n}{b_{k}}$$ Неравенство задачи доказано. Мы видели, что для $n=2$ неравенство переходит в равенство лишь при $x/b_{1}=a_{2}/b_{2}$, т.е. в случае коллинеарности векторов $(a_{1},b_{1})$ и $(a_{2},b_{2})$. Попробуем дать задаче дальнейшую векторную интерпретацию.

Второе решение

Будем рассматривать числовые функции $f(\bar{x})$, где $\bar{x}=(x,y)$ — вектор плоскости, $x>0,y>0$.

Определение. Функция $f(\bar{x})$ называется вогнутой (или выпуклой вверх), если для любых векторов $\bar{x}_{1}$ и $\bar{x}_{2}$ выполняется неравенство $$\frac{f(\bar{x}_{1})+f(\bar{x}_{2})}{2}\leq f(\frac{\bar{x}_{1}+\bar{x}_{2}}{2}) (1)$$
Замечание. Геометрический смысл вогнутости ясен из рисунка 3. Вогнутыми являются, например,  функции $y=ax+b, y=-x^{2}+bx+c, y=-1/(dx+e)$, где $dx+e>0$.Рассмотрим функцию $$f(\bar{x})=\frac{xy}{x+y}$$

Picture (2)

При $n=2$ утверждение задачи означает, что функция вогнута; при произвольном $n$ утверждение означает, что выполнено неравенство $$\frac{1}{n}\sum\limits_{i=1}^{n}{f({\bar{x}_{i}})}\leq f(\frac{1}{n}\sum\limits_{i=1}^{n}{{\bar{x}_{i}}}) (2)$$

Теорема. Для любой вогнутой (т.е. удовлетворяющей неравенству $(1)$) функции выполнено также и неравенство $(2)$.
Доказательство. Предполагая справедливость теоремы при $n=m$, докажем ее справедливость при $n=2m$. Имеем: $$f(\frac{{\bar{x}_{1}}+{\bar{x}_{2}}+…+{\bar{x}_{2m}}}{2m})=$$ $$=f(\frac{\frac{{\bar{x}_{1}}+{\bar{x}_{2}}}{2}+…+\frac{{\bar{x}_{2m-1}}+{\bar{x}_{2m}}}{2}}{m})\geq$$ $$\geq \frac{f(\frac{{\bar{x}_{1}}+{\bar{x}_{2}}}{2})+…+f(\frac{{\bar{x}_{2m-1}}+{\bar{x}_{2m}}}{2})}{m}\geq$$ $$\geq \frac{\frac{f({\bar{x}_{1}})+f({\bar{x}_{2}})}{2}+…+\frac{f({\bar{x}_{2m-1}})+f({\bar{x}_{2m}})}{2}}{m}=$$ $$=\frac {f({\bar{x}_{1}})+…+f({\bar{x}_{2m}})}{2m}$$ Таким образом теорема справедлива при $n=2m$. Положим теперь $n+p=2m$. Тогда $$f(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}+{\bar{y}_{1}}+…+{\bar{y}_{p}}}{n+p})\geq$$ $$\geq\frac {f({\bar{x}_{1}})+…+f({\bar{x}_{n}})+f({\bar{y}_{1}})+…+f({\bar{y}_{p}})}{n+p} (3)$$ Положим $${\bar{y}_{1}}=…={\bar{y}_{p}}=\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n}$$ тогда $${\bar{y}_{1}}+…+{\bar{y}_{p}}=\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n}\cdot p$$ Следовательно, $$f(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}+{\bar{y}_{1}}+…+{\bar{y}_{p}}}{n+p})=f(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n})$$ С другой стороны, $$\frac{f({\bar{x}_{1}})+…+f({\bar{x}_{n}})+f({\bar{y}_{1}})+…+f({\bar{y}_{p}})}{n+p}=$$ $$=\frac{f({\bar{x}_{1}})+…+f({\bar{x}_{n}})+pf(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n})}{n+p}$$ Из неравенства $(3)$ получаем: $$f(\frac{{\bar{x}_{1}}+…+{\bar{x}_{n}}}{n})\geq \frac{f({\bar{x}_{1}})+…+f({\bar{x}_{n}})}{n}$$ Теорема доказана.

Перепишем теперь утверждение задачи при $n=2$; функция $f(\bar{x})=\frac{xy}{x+y}$, рассматриваемая на любой прямой $l$, является вогнутой. Докажем это утверждение.

Если $l\mid Oy$, то вогнутость функции $f(\bar{x})$ очевидна. Пусть $l$ задана уравнением $y=ax+b$. Тогда $$f(\bar{x})=\frac{ax^{2}+bx}{(a+1)x+b}$$ При $a=-1$ будет $b>0$, и $f(x)$ вогнута. Полагая $t=(a+1)x+b$ при $a\neq -1$, получаем: $f(\bar{x})=ct+d+\frac{e}{t}$, где $e=\frac{-b^{2}}{(a+1)^{2}}$

При $b=0$ функция $f(\bar{x})$ линейная, при $b\neq 0$, поскольку $t>0$, — строго вогнутая (т.е. при $\bar{x}_{1}\neq \bar{x}_{2}$ неравенство $(1)$ строгое).

Утверждение задачи доказано.

Признаки Абеля и Дирихле сходимости числовых рядов

Рассмотрим ряд:
$\sum\limits_{n=1}^{\infty}a_{n}b_{n}=a_{1}b_{1}+a_{2}b_{2}+…+a_{n}b_{n}+…$ $(1)$

где ${a_{n}}$ и ${b_{n}}$ — две последовательности вещественных чисел.

Следующие теоремы содержат достаточное условие сходимости ряда $(1)$.

Теорема (Признак Дирихле)

Ряд $(1)$ сходится, если выполнятся $2$ условия:

  1. Последовательность частичных сумм ряда $\sum\limits_{n=1}^{\infty}b_{n}$- ограничена, т.е $\exists$ $C > 0$ такое, что $|b_{1}+b_{2}+…+b_{n}| \leq C$, $\forall$ $n \in \mathbb{N}$.
  2. Последовательность ${a_{n}}$ монотонно стремится к нулю, т.е. $a_{n+1} \geq a_{n}$ $n \in \mathbb{N}$ или $a_{n+1} \leq a_{n}$ $n \in \mathbb{N}$ и $\lim\limits_{n \rightarrow \infty }a_{n} = 0$.

Доказательство

Покажем, что для ряда $\sum\limits_{n=1}^{\infty}a_{n}b_{n}$ выполняется условие Коши, т.е: $\forall$$\varepsilon>0$ $\exists$ $N_{\varepsilon}$: $\forall$$n\geq$$N_{\varepsilon}$,

$\forall$$p\epsilon$$N$$=>$ $|S_{n+p}-S_{n}|=$$|\sum\limits_{k=n+1}^{n+p}a_{k}b_{k}|<\varepsilon$

Пусть $A_{k}=a_{1}+a_{2}+…+a_{k}$, по условию $|A_{k}|<C$.

Используя преобразования Абеля, получим неравенства:

$|a_{n}b_{n}+a_{m+1}b_{m+1}+a_{m+2}b_{m+2}+…+a_{n-1}b_{n-1}+a_{n}b_{n}|=$
$=|b_{m}(A_{m}-A_{m-1})+b_{m+1}(A_{m+1}-A_{m})+b_{m+2}(A_{m+2}-A_{m+1})+…+b_{n-1}(A_{n-1}-A_{n-2})+b_{n}(A_{n}-A_{n-1})|=$
$=|-b_{m}A_{m-1}+(b_{m}-b_{m+1})A_{m}+(b_{m+1}-b_{m+2})A_{m+1}+…+(b_{n-1}-b_{n})A_{n-1}+b_{n}A_{n}|<$
$<b_{m}C+(b_{m}-b_{m-1})C+…+(b_{n-1}-b_{n})C+b_{n}C=2bmC<\varepsilon$, $m\geq$$n_{0}$; $|A_{k}|<C$

Следовательно, условия Коши выполнены, поэтому ряд сходится. $\blacksquare$

Спойлер

$\sum\limits_{n = 1}^{\infty}{\frac{\sin n\alpha }{n}}$.
Прежде всего, если $\alpha \neq 2\Pi m, m = 0, \pm 1, \pm 2, …$, то $\sum\limits_{ k = 1}^{n}{\sin k \alpha } = \sum\limits_{k = 1}^{n}{\frac{2\sin \frac{\alpha }{2}\sin k \alpha }{{2}\sin \frac{\alpha }{2}}} = \frac{\sum\limits_{k = 1}^{n}{\left[\cos k — \frac{1}{2} \alpha — \cos k + \frac{1}{2} \alpha\right]}}{2\sin \frac{\alpha }{2}} = \frac{\cos \frac{1}{2} \alpha — \cos n + \frac{1}{2} \alpha }{2\sin \frac{\alpha }{2}} = \frac{\sin \frac{n + 1}{2} \alpha \sin\frac{n}{2} \alpha }{ \sin \frac{\alpha }{2}}$ и следовательно, $\left|\sum\limits_{k = 1}^{n}{\sin k \alpha } \right|\leq \frac{1}{\left|\sin \frac{\alpha }{2} \right|}$. Если же $\alpha = 2\Pi m, m = 0, \pm 1, \pm 2, …$, то все члены сумм $\sum\limits_{k = 1}^{n}{\sin k \alpha }$ равны нулю, поэтому эти суммы при любом $n$ равны нулю и, следовательно , ограничены. Таким образом, при всех $\alpha$ суммы $\sum\limits_{k = 1}^{n}{\sin k \alpha }$ ограничены.

С другой стороны, последовательность $\frac{1}{n}$ монотонно убывает и стремится к нулю, поэтому, по признаку Дирихле, ряд $\sum\limits_{n = 1}^{\infty}{\frac{\sin n \alpha }{n}}$ сходится при любом $\alpha$.

Аналогично этому ряду исследуется ряд $\sum\limits_{n = 1}^{\infty}{\frac{\cos n \alpha }{n}}$. Так при $\alpha \neq 2\Pi m, m = 0, \pm 1, \pm 2, …$ справедливо равенство $\sum\limits_{ k = 1}^{n}{\cos k \alpha } = \frac{1}{2\sin \frac{\alpha }{2}}\sum\limits_{k = 1}^{n}{ 2\sin \frac{\alpha }{2} \cos k \alpha } = \frac{1}{2\sin \frac{\alpha }{2}}\sum\limits_{k = 1}^{n}{ \left[ \sin k + \frac{1}{2\alpha } — \sin k — \frac{1}{2} \alpha \right]} = \frac{\sin n + \frac{1}{2 }\alpha — \sin \frac{\alpha }{2}}{2 \sin \frac{\alpha }{2}} = \frac{\sin \frac{na}{2} \cos \frac{n + 1}{2} \alpha }{\sin \frac{\alpha }{2}}$, то для указанных $\alpha $ выполняется неравенство $\left|\sum\limits_{k = 1}^{n}{\cos k \alpha } \right|\leq \frac{1}{\left|\sin \frac{\alpha }{2} \right|}$ и, следовательно по принципу Дирихле , ряд $\sum\limits_{n = 1}^{\infty}{\frac{\cos n \alpha }{n}}$ сходится при всех $\alpha \neq 2\Pi m, m = 0, \pm 1, \pm 2, …$. Если же $\alpha = 2\Pi m, m = 0, \pm 1, \pm 2, …$, то ряд $\sum\limits_{n = 1}^{\infty}{\frac{\cos n \alpha }{n}}$ в отличие от ряда $\sum\limits_{n = 1}^{\infty}{\frac{\sin n \alpha }{n}}$ расходится, так как он превращается в гармонический ряд.

[свернуть]

Теорема (Признак Абеля)

Пусть дан ряд $(1)$. Он сходится, если выполняются $2$ условия:

  1. $\sum\limits_{n=1}^{\infty}b_{n}$- сходится.
  2. Числа {$a_{n}$} образуют монотонную и ограниченную последовательность, удовлетворяющую условиям $a_{n+1} \geq a_{n}$ или $a_{n+1} \leq a_{n}$ $n \in \mathbb{N}$.

Доказательство

По теореме о пределе монотонной ограниченной последовательности

$\exists$ $\lim\limits_{n\rightarrow\infty}a_{n}=a\Leftrightarrow$ $\lim_{n\rightarrow\infty}(a_{n}-a)=0\Rightarrow$ ${a_{n}-a}$- монотонно стремится к нулю.

Из сходимости $\sum\limits_{n=1}^{\infty}b_{n}\Rightarrow$ ${B_{n}}$- огр.
Тогда, по признаку Дирихле ряд: $\sum\limits_{n=1}^{\infty}(a_{n}-a)b_{n}$- сходится.
Отсюда следует, что $\sum\limits_{n=1}^{\infty}a_{n}b_{n}=\sum\limits_{n=1}^{\infty}(a_{n}-a)b_{n}+a\sum\limits_{n=1}^{\infty}b_{n}$- сходится, как сумма двух рядов.
Теорема доказана. $\blacksquare$

Спойлер

$\sum\limits_{n = 2}^{\infty}{\frac{\sin n \alpha \cos \frac{\Pi }{n}}{\ln \ln n}}$

Заметим, что ряд $\sum\limits_{n = 2}^{\infty}{\frac{\sin n \alpha }{\ln \ln n}}$ сходится согласно признаку Дирихле: Последовательность $\frac{1 }{\ln \ln n}$ монотонно стремится к нулю, а последовательность частичных сумм ряда $\sum\limits_{n = 2}^{\infty}{\sin n \alpha }$ ограничена.

Последовательность $\cos \frac{\Pi }{n}, n = 2,3 … $, монотонна, поэтому, по признаку Абеля, ряд $\sum\limits_{n = 2}^{\infty}{\frac{\sin n \alpha \cos \frac{\Pi }{n}}{\ln \ln n}}$ сходится при всех $\alpha $.

[свернуть]

Тест на тему: Признаки Абеля и Дирихле

Тест на тему: признаки Абеля и Дирихле.


Таблица лучших: Тест на тему: Признаки Абеля и Дирихле

максимум из 4 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

M1437

Докажите, что если последовательность удовлетворяет следующим условиям: Читать далее «M1437»

Бесконечно большие последовательности, их свойства и связь с бесконечно малыми последовательностями

Определение

Последовательность $latex \left \{ x_{n} \right \} $ называется бесконечно большой, если $latex \forall \varepsilon >0 \;\; \exists N_{\varepsilon}>0 \;\;\forall n\geq N_{\varepsilon} \;\;\left|x_{n}\right|\geq\varepsilon $, или $latex \lim\limits_{n\to\infty}x_{n}=\infty $.

Геометрическая интерпретация

Назовем $latex \varepsilon $-окрестностью точки $latex \infty $ множество $latex E=\left\{x\in\mathbb{R}:\left|x\right|>\varepsilon\right\} $.
Введем множества $latex E_{1}=\left\{x\in\mathbb{R}:\;x<-\varepsilon\right\} $ и $latex E_{2}=\left\{x\in\mathbb{R}:\;x>\varepsilon\right\} $. Назовем эти множества $latex \varepsilon $-окрестностями точек $latex -\infty $ и $latex \infty $ соответственно. Тогда $latex E=E_{1}\cup E_{2} $.

E-okr infty

Теорема (связь между бесконечно большими и бесконечно малыми последовательностями)

  • Если $latex \left\{x_{n}\right\} $ — бесконечно большая последовательность, то начиная с некоторого номера $latex n $ определена последовательность $latex \left \{ \frac{1}{x_{n}}\right \} $, которая является бесконечно малой.
  • Если все элементы бесконечно малой последовтельности $latex \left \{ \alpha_{n}\right \} $ отличны от нуля, то последовательность $latex \left \{\frac{1}{\alpha_{n}}\right \} $ — бесконечно большая.

Доказательство.

  • Пусть $latex \left\{x_{n}\right\} $ — бесконечно большая последовательность, т.е. $latex \forall \varepsilon >0 \;\; \exists N_{\varepsilon}>0 \;\;\forall n\geq N_{\varepsilon} \;\;|x_{n}|\geq\varepsilon $. Это означает, что при $latex n\geq N_{\varepsilon} $ все элементы $latex x_{n}\neq 0 $, поэтому последовательность $latex \left\{\frac{1}{x_{n}}\right\} $ имеет смысл с номера $latex N_{\varepsilon} $.
    Пусть $latex A $ — любое положительное число, тогда для числа $latex \frac{1}{A}$ $latex \exists\,N_{1}:\forall n\geq N_{1}\left|\frac{1}{x_{n}}\right|<A$, что по определению означает, что последовательность $latex \left\{\frac{1}{x_{n}}\right\} $ — бесконечно малая.
  • Второе доказательство проводится аналогично.

Свойства бесконечно больших последовательностей

  1. Сумма бесконечно больших последовательностей одного знака есть бесконечно большая последовательность того же знака.
  2. Сумма бесконечно большой и ограниченной последовательностей есть бесконечно большая последовательность.
  3. Произведение бесконечно больших последовательностей есть бесконечно большая последовательность.
  4. Произведение бесконечно большой последовательности на константу есть бесконечно большая последовательность.

Доказательство.

  1. Пусть $latex \left\{x_{n}\right\},\;\left\{y_{n}\right\} $ — бесконечно большие последовательности.
    По определению:
    $latex \forall \varepsilon >0 \;\; \exists N_{1}>0:\;\forall n\geq N_{1} \;\;\left|x_{n}\right|\geq\varepsilon $ и $latex \forall \varepsilon >0 \;\; \exists N_{2}>0:\;\forall n\geq N_{2} \;\;\left|y_{n}\right|\geq\varepsilon $.
    Тогда для последовательности $latex \left\{x_{n}+y_{n}\right\} $:
    $latex \forall \varepsilon >0 \;\; \exists N=\max\left\{N_{1},N_{2}\right\}>0:\;\forall n\geq N \;\;\left|x_{n}+y_{n}\right|\geq\varepsilon $, что означает, что последовательность $latex \left\{x_{n}+y_{n}\right\} $ — бесконечно большая.
  2. Пусть последовательность $latex \left\{x_{n}\right\} $ — бесконечно большая, $latex \left\{y_{n}\right\} $ — ограниченная. Тогда по определению $latex \forall \varepsilon >0 \;\; \exists N_{\varepsilon}>0 \;\;\forall n\geq N_{\varepsilon} \;\;|x_{n}|\geq\varepsilon $ и $latex \exists\,C:\;\forall n\in\mathbb{N} \left|y_{n}\right|<C $.
    Рассмотрим $latex \left|x_{n}+y_{n}\right| $:
    $latex \left|x_{n}+y_{n}\right|=\left|x_{n}\right|\cdot\frac{\left|x_{n}+y_{n}\right|}{\left|x_{n}\right|}=\left|x_{n}\right|\cdot\left|\frac{x_{n}+y_{n}}{x_{n}}\right|=\left|x_{n}\right|\cdot\left|\frac{x_{n}}{x_{n}}+\frac{y_{n}}{x_{n}}\right|=\left|x_{n}\right|\left(1+0\right)=\left|x_{n}\right|\geq\varepsilon $
    (используются свойства модулей, свойства бесконечно малых последовательностях и теорема о связи между бесконечно большими и бесконечно малыми последовательностями)
    Получили: $latex \forall \varepsilon >0 \;\; \exists N_{\varepsilon}>0 \;\;\forall n\geq N_{\varepsilon} \;\;\left|x_{n}+y_{n}\right|\geq\varepsilon $, что означает, что последовательность $latex \left\{x_{n}+y_{n}\right\} $ — бесконечно большая.
  3. Доказательство аналогично предыдущему.
  4. Пусть последовательность $latex \left\{x_{n}\right\} $ — бесконечно большая, $latex C \neq 0 $ — константа. Тогда по определению $latex \forall \varepsilon >0 \;\; \exists N_{\varepsilon}>0 \;\;\forall n\geq N_{\varepsilon} \;\;|x_{n}|\geq\varepsilon $.
    Рассмотрим $latex \left|x_{n}\cdot C\right| $:
    $latex \left\{x_{n}\right\}\rightarrow\infty, \Rightarrow \left\{\frac{1}{x_{n}}\right\}\rightarrow 0 $ (по теореме о связи между бесконечно большими и бесконечно малыми последовательностями).
    $latex C $ — константа, $latex \Rightarrow\left\{\frac{1}{C}\right\} $ — также константа, т.е. ограниченная.
    $latex \left \{ \frac{1}{x_{n}\cdot C} \right \}=\left \{\frac{1}{x_{n}}\cdot\frac{1}{C} \right \}\rightarrow 0\Rightarrow\left \{ x_{n}\cdot C \right \}\rightarrow\infty $, что означает, что последовательность $latex \left\{x_{n}y_{n}\right\} $ — бесконечно большая.
    (используются свойства бесконечно малых последовательностей и теорема о связи между бесконечно большими и бесконечно малыми последовательностями)

Примеры.

  1. Последовательность $latex \left\{n\right\} $ является бесконечно большой, т.к. $latex \forall\varepsilon\>0\;\exists N=\left[\varepsilon\right]+1:\;\forall n\geq N\;n>\varepsilon $.
  2. Последовательность $latex \left\{\frac{n^2}{n+1}\right\} $ является бесконечно большой, т.к. $latex \frac{n^2}{n+1}=\frac{n}{1+\frac{1}{n}}\rightarrow\frac{\infty}{1+0}=\infty $.
  3. $latex \frac{n}{\left(\cos n\right)^2}=n\cdot\frac{1}{\left(\cos n\right)^2} $ — бесконечно большая, т.к. $latex \lim\limits_{n\rightarrow\infty}n=\infty $, а $latex \frac{1}{\left(\cos n\right)^2} $ — ограниченная, сохраняющая знак.
  4. $latex \left\{-\sqrt{n}\right\} $
    Выберем произвольное число $latex \varepsilon>0:\;-\sqrt{n}\leq-\varepsilon;\; N>\varepsilon^2 $. Получили: $latex \forall\varepsilon>0\;\exists N=\left[\varepsilon^{2}+1\right]:\,\forall n\geq N\;\; -\sqrt{n}<-\varepsilon $, т.е. $latex \lim\limits_{n\rightarrow\infty}\left(-\sqrt{n}\right)=-\infty $.

Литература

Тест по теме «Бесконечно малые и бесконечно большие последовательности»


Таблица лучших: Бесконечно малые и бесконечно большие последовательности

максимум из 20 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных

Бесконечно малые последовательности и их свойства

Бесконечно малые последовательности

Определение бесконечно малой последовательности

Последовательность $latex \left \{ \alpha_{n} \right \} $ называется бесконечно малой, если $latex \lim\limits_{n \rightarrow \infty }\alpha_{n} =0 $, т.е. $latex \forall \varepsilon >0 \;\; \exists N_{\varepsilon}>0 \;\;\forall n\geq N_{\varepsilon} \;\;|\alpha_{n}|<\varepsilon $.

Геометрическая интерпретация

E-okr01

Свойства бесконечно малых последовательностей

  1. Бесконечно малая последовательность ограничена.
  2. Сумма бесконечно малых последовательностей есть бесконечно малая последовательность.
  3. Произведение бесконечно малой последовательности на ограниченную есть бесконечно малая последовательность.
  4. Если элементы бесконечно малой последовательности $latex \left\{\alpha_{n}\right\} $ равны одному и тому же числу $latex C $, то $latex C=0 $.

Доказательство.

  1.  Пусть $latex \left\{ \alpha_{n}\right\} $ — бесконечно малая последовательность, $latex \varepsilon $ — некоторое положительное число. Пусть $latex N $ — номер, такой, что $latex \forall n \geqslant N \; \left|\alpha_{n}\right|<\varepsilon $. Обозначим $latex \max \left \{\varepsilon,\left|\alpha_{1}\right|,\left|\alpha_{2}\right|,\,…\,,\left|\alpha_{n-1}\right|\right \} $ числом A. Получим:$latex \forall\varepsilon>0 \;\exists A=\max\left\{\varepsilon,\left|\alpha_{1}\right|,\left|\alpha_{2}\right|,\,…\,,\left|\alpha_{n-1}\right|\right\}:\forall n\in\mathbb{N}\; \left|\alpha_{n}\right|<A $, что и означает, что последовательность ограничена.
  2. Пусть $latex \left\{ \alpha_{n} \right\} $ и $latex \left\{ \beta_{n} \right\} $ — бесконечно малые последовательности. Пусть $latex \varepsilon $ — произвольное положительное число, $latex N_{1} $ — номер, начиная с которого $latex \left|\alpha_{n}\right|<\frac{\varepsilon}{2} $, а $latex N_{2} $ — номер, начиная с которого $latex \left|\beta_{n}\right|<\frac{\varepsilon}{2} $. Такие номера найдутся по определению бесконечно малой последовательности. Тогда по свойству модулей $latex \left|\alpha_{n}+\beta_{n}\right|\leq \left|\alpha_{n}\right|+\left|\beta_{n}\right| $. Обозначим через $latex N $ наибольший из номеров <$latex N_{1} $ и $latex N_{2} $. Получим: $latex \forall \varepsilon>0\;\exists N\; \forall n\geq N \left|\alpha_{n}+\beta_{n}\right|<\varepsilon $, что означает, что последовательность $latex \left\{\alpha_{n}+\beta_{n}\right\} $ — бесконечно малая.
  3. Пусть последовательность $latex \left\{ \alpha_{n} \right\} $ — бесконечно малая, а $latex \left\{ x_{n} \right\} $ — ограниченная. По определению,  $latex \exists\, c>0:\forall n\in \mathbb{N} \left|x_{n}\right|<c $ и $latex \forall \varepsilon >0 \;\; \exists N_{\varepsilon}>0 \;\;\forall n\geq N_{\varepsilon} \;\;|\alpha_{n}|<\frac{\varepsilon}{c} $. По свойству модулей, $latex \left|\alpha_{n}\cdot x_{n}\right|=\left|\alpha_{n}\right|\cdot\left|x_{n}\right|<\frac{\varepsilon}{c}\cdot c=\varepsilon $. Получили:$latex \forall\,\varepsilon>0\;\exists N\in\mathbb{N}:\forall n\geq N\:\left|\alpha_{n}\cdot x_{n}\right|<\varepsilon $, а это означает по определению, что последовательность $latex \left\{\alpha_{n}\cdot x_{n}\right\} $  — бесконечно малая.
    Следствие: произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.
  4. Пусть $latex C\neq 0 $. Тогда для $latex \varepsilon=\frac{\left|C\right|}{2}\;\;\exists N: \forall n\geq N \left|\alpha_{n}\right|<\frac{\left|C\right|}{2} $. По условию, $latex \alpha_{n}=C $, тогда $latex C<\frac{\left|C\right|}{2} $. Получили противоречие, следовательно, $latex C=0 $.

Примеры

  1. Последовательность $latex \frac{1}{n} $ — бесконечно малая, т.к. $latex \forall\varepsilon>0\;\;\exists N=\left[\frac{1}{\varepsilon}\right]+1:\;\forall n\geq N\;\;\frac{1}{n}<\varepsilon $.
  2. $latex \frac{\sin n}{n}=\frac{1}{n}\cdot \sin n $  — бесконечно малая, т.к. $latex \sin n $ — ограниченная, а $latex \lim\limits_{n \to \infty } \frac{1}{n}=0 $.
  3. $latex \frac{\left ( -1 \right )^{n}}{n}=\frac{1}{n}\cdot\left(-1 \right )^{n} $ — бесконечно малая, т.к.$latex \left(-1 \right )^{n} $  — ограниченная, а $latex \lim\limits_{n\to\infty}\frac{1}{n}=0 $.
  4. $latex \sin\frac{1}{n} $ — бесконечно малая при $latex n\rightarrow\infty $, т.к. $latex \forall\varepsilon>0\;\sin\frac{1}{n}<\varepsilon $ при $latex n>\frac{1}{\arcsin{\varepsilon}} $.
  5. $latex \frac{n}{n^2+1} $ — бесконечно малая, т.к. $latex \frac{n}{n^2+1}<\frac{n}{n^2}=\frac{1}{n} $, которая является бесконечно малой.

Бесконечно малые последовательности и их свойства

Тестовые вопросы по вышеизложенному материалу.

Литература: