Processing math: 100%

Применение формулы Тейлора к нахождению границ

Рассмотрим вычисление пределов с помощью формулы Тейлора на примерах:

$latex 1)\; \;

\lim\limits_{x\rightarrow 0}\frac{tg x-\frac{x}{1+x^{2}} }{\sin x-sh x}=\begin{bmatrix}
tg x=x+\frac{x^{3}}{3}+\circ (x^{2})\\
-\frac{1}{1+x^{2}}=1-x^{2}+\circ (x^{2})\\
-x\frac{1}{1+x^{2}}=x(1-x^{2}+\circ (x^{2}))=x-x^{3}+\circ (x^{3})\\
tg x-\frac{x}{1+x^{2}}=x+\frac{x^{3}}{3}+\circ (x^{2})-x+x^{3}-\circ (x^{3})=\frac{4}{3}x^{3}+\circ (x^{3})\\

\sin x=x-\frac{x^{3}}{3!}+\circ (x^{4})\\

sh x=x+\frac{x^{3}}{3!}+\circ (x^{4})\\

\sin x-sh x=x-\frac{x^{3}}{3!}-x-\frac{x^{3}}{3!}+\circ (x^{4})=-\frac{1}{3}x^{3}+\circ (x^{4})\\

\end{bmatrix}=\lim\limits_{x\rightarrow 0}\frac{\frac{4}{3}x^{3}+\circ (x^{3})}{-\frac{1}{3}x^{3}+\circ (x^{4})}=-4 &s=4

$

$latex 2)\; \;

\lim\limits_{x\rightarrow +\infty }x(\sqrt{x^{2}+2x}-2\sqrt{x^{2}+x}+x)=\lim\limits_{x\rightarrow +\infty }x(\sqrt{x^{2}(1+\frac{2}{x})}-2\sqrt{x^{2}(1+\frac{1}{x})}+x)=[t=1xt0]=\lim\limits_{t\rightarrow 0}\frac{1}{t^{2}}(\sqrt{1+2t}-2\sqrt{1+t}+1)=\begin{bmatrix}
(1+x)^{\alpha }=1+\frac{\alpha }{1!}x+\frac{\alpha(\alpha-1) }{2!}x^{2}+\circ (x^{2})\\
(1+2t)^{\frac{1}{2}}=1+\frac{\frac{1}{2}}{1!}2t+\frac{\frac{1}{2}(-\frac{1}{2}) }{2!}4t^{2}+\circ (t^{2})\\
(1+t)^{\frac{1}{2}}=1+\frac{\frac{1}{2}}{1!}t+\frac{\frac{1}{2}(-\frac{1}{2}) }{2!}t^{2}+\circ (t^{2})\\

\end{bmatrix}=\lim\limits_{t\rightarrow 0}\frac{1}{t^{2}}(1+t-\frac{1}{2}t^{2}-2-t+\frac{1}{4}t^{2}+\circ (t^{2})+1)=\lim\limits_{t\rightarrow 0}\frac{1}{t^{2}}*(-\frac{1}{4})t^{2}+\circ \frac{(t^{2})}{t^{2}}=[(t2)t20]=-\frac{1}{4} &s=1

$

Источники:

  • Лысенко З.М. Конспект лекций по курсу математического анализа. (тема «Вычисление предела с помощью формулы Тейлора»).
  • Ильин В.А., Позняк Э.Г. Основы математического анализа.Выпуск 2, 1982 год. Часть 1. Глава 8, пар. 16, стр 278-281.

Формула Тейлора с остатком в форме Пеано

Формулировка:

Если существует f(n)(x0), то f(x) представима в следующем виде:

f(x)=nk=0f(k)k!(xx0)k+o((xx0)n)xx0

Это выражение f(x) называется формулой Тейлора с остаточным членом в форме Пеано (или локальной формулой Тейлора)

Доказательство:

Для начала докажем Лемму

Пусть функции φ(x),ψ(x) определены в  δ  окрестности точки x0 и удовлетворяют следующим условиям:

  1. xUδφ(n+1)(x),ψ(n+1)(x);
  2. φ(x0)=φ(x0)==φ(n)(x0)=0ψ(x0)=ψ(x0)==ψ(n)(x0)=0
  3. ψ(x)0,ψk(x)0xUδ(x0),k=¯1,n+1

Тогда xUδ(x0) существует точка ξ, принадлежащая интервалу с концами x0 и x такая, что φ(x)ψ(x)=φn+1(ξ)ψn+1(ξ)

Доказательство 

Пусть, например, x(x0,x0+δ). Тогда применяя к функциям φ и ψ на отрезке [x0,x] теорему Коши и учитывая, что φ(x)=ψ(x)=0 по условию, получаем

φ(x)ψ(x)=φ(x)φ(x0)ψ(x)ψ(x0)=φ(ξ1)ψ(ξ1)$,$x0<ξ1<x

Аналогично, применяя к функциям φ и ψ на отрезке [x0,ξ1] теорему Коши, находим

φ(ξ1)ψ(ξ1)=φ(ξ1)φ(x0)ψ(ξ1)ψ(x0)=φ»(ξ2)ψ»(ξ2), x0<ξ2<ξ1

Из этих двух равенств следует, что

φ(x)ψ(x)=φ(ξ1)ψ(ξ1)=φ»(ξ2)ψ»(ξ2), x0<ξ2<ξ1<x<x0+δ

Применяя теорему Коши последовательно к функциям φ» и ψ»,φ(3) и ψ(3),…,φ(n) и ψ(n) на соответствующих отрезках получаем

φ(x)ψ(x)=φ(ξ1)ψ(ξ1)==φn(ξn)ψn(ξn)=φn+1(ξ)ψn+1(ξ)

где x0<ξ<ξn<<ξ2<ξ1<x<x0+δ

Равенство доказано для случая, когда x(x0,x0+δ), аналогично рассматривается случай, когда x(x0δ,x0).

Теперь, когда лемма доказана, приступим к доказательству самой теоремы:

Из существования f(n)(x0) следует, что функция f(x0) определена и имеет производные до (n1) порядка включительно в δ окрестности точки  x0

Обозначим φ(x)=rn(x),ψ(x)=(xx0)n, где  rn(x)=f(x)Pn(x).

Функции φ(x) и ψ(x) удовлетворяют условиям леммы, если заменить номер n+1 на n1

Используя ранее доказанную лемму и учитывая, что r(n1)n(x0)=0 получаем

rn(x)(xx0)n=rn1n(ξ)r(n1)n(x0)n!(ξx0), ξ=ξ(x)()

где x0<ξ<x<x0<x0+δ или x0δ<x<ξ<x0.

Пусть xx0, тогда из неравенств следует, что ξx0, и в силу существования f(n)(x0) существует

limxx0r(n1)n(x)r(n1)n(x0)xx0=

=limxx0r(n1)n(ξ)r(n1)n(x0)ξx0=r(n)n(x0)=0

Так как выполняются равенства rn(x0)=rn(x0)==r(n)n(x0)=0

Таким образом, правая часть формулы () имеет при xx0 предел, равный нулю, а поэтому существует предел левой части этой формулы, так же равный нулю. Это означает, что rn(x)=o((xx0)n),xx0, то есть f(x)Pn(x)=o((xx0)n), что и требовалось доказать.

Пример:

Разложить функцию y=cos2(x) в окрестности точки x0=0  по Тейлору с остатком в форме Пеано.

Решение

Табличное разложение косинуса имеет следующий вид:

cos(x)=1x22!+x44!+(1)nx2n(2n)!+o(x2n+1)

Представим функцию cos2(x) в виде:

cos2(x)=1+cos(2x)2=12+12cos(2x)

Заменим в табличном разложении x на 2x и подставим представление косинуса.Получим

cos2(x)=1x2+x43+(1)n22n1x2n2n!+o(x2n+1)

Источники:

  1. Конспект по курсу математического анализа Лысенко З.М.
  2. Тер-Крикоровв А.М., Шабунин М.И. Курс математического анализа -М.:ФИЗМАТ-ЛИТ, 2001.-672 с. гл. IV §18 с. 161.

Тест на знание формулы Тейлора(ост.Пеано)

Проверьте себя на знание доказательства и применения формулы Тейлора с остатком в форме Пеано.

Теорема про остаток формулы Тейлора

Получим информацию об остатке.

Теорема (об остатке [latex]r_{n}(x)[/latex] ф-лы Тейлора)

[latex]f(t), {f}'(t), {f}»(t),\cdots , f^{(n)}(t)\in C[x_{0},x][/latex] и [latex]\exists f^{(n+1)}(t)[/latex], где [latex]t \in (x_{0},x)[/latex]. Пусть ф-ция [latex]\varphi \in C[x_{0},x][/latex] и [latex]\exists \varphi'(t) \neq 0[/latex]     [latex]\forall t(x_{0},x)[/latex]. Тогда [latex]\exists[/latex] т. [latex]\xi \in (x_{0},x)[/latex] : [latex]r_{n}(x_{0},x)=\frac{\varphi (x) -\varphi (x_{0})}{\varphi ‘(\xi)n!} * \frac{f^{(n+1)}(\xi)}{1!}*(x-\xi)^{n}[/latex]

[latex]\square [/latex]
Введем вспомогательную ф-цию [latex]F(t)=f(x)-P_{n}(t,x)[/latex], т.е. [latex]P_{n}(t,x)=f(t)+\frac{{f}'(t)}{1!}(x-t)+\cdots + \frac{f^{(n)}(t)}{n!}(x-t)^{n}[/latex]

[latex]F(t)=f(x)-\left [ f(t)+\frac{{f}'(t)}{1!}(x-t)+\frac{{f}»(t)}{2!}(x-t)^{2}+ \frac{f^{(3)}(t)}{3!}(x-t)^{3}+ \cdots+\frac{f^{(n)}(t)}{n!}(x-t)^{n} \right ][/latex] =[latex]-\left [ f'(t)+ \frac{f»(t)}{1!}(x-t)’ +\frac{f^{(3)}(t)}{2!}((x-t)^{2})’+ \frac{f^{(4)}(t)}{3!}((x-t)^{3})’ +\cdots+\frac{f^{(n+1)}(t)}{n!}((x-t)^{n})’ \right ][/latex]=[latex]-\left [ f'(t)+ \frac{f»(t)(x-t)+(x-t)’f'(t)}{1!} \right ][/latex]=[latex s=4]-\left [ f'(t)+ \frac{f»(t)}{1!}(x-t) +\frac{f'(t)}{1!}(-1)+ \frac{f^{(3)}(t)}{2!}(x-t)^{2}+\frac {f»(t)}{2!}2(x-t)(-1)+\frac {f^{(4)}(t)}{3!}(x-t)^{3}+3(x-t)^{2}(-1)\frac {f^{(3)}(t)}{3!}+\cdots+\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}+ n(x-t)^{n-1}(-1)\frac {f^{n}(t)}{n!} \right ][/latex]

[latex]F'(t)=-\frac {f^{(n+1)}(t)}{n!}(x-t)^{n}[/latex]
К паре ф-ций F(t) и [latex]\varphi (t)[/latex] на [latex][x_{0},x][/latex] применим теорему Коши о конечных приращениях [latex]\Rightarrow \exists[/latex] т. [latex]\xi \in (x_{0},x)[/latex]: [latex]\frac {f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}[/latex];
[latex]\frac {\overbrace {F(x)}^0-\overbrace{F(x_{0})}^{r_{n}(x_{0},x)}}{\varphi (x) — \varphi (x_{0})}=\frac {F'(\xi)}{\varphi ‘(\xi)}[/latex];

Уточняем!
[latex]F(x)=f(x) — P_{n}(x,x)=0;[/latex]
[latex]F(x_{0})=f(x)-P_{n}(x_{0},x)=r_{n}(x_{0},x)[/latex];
[latex]F'(\xi)=- \frac {f^{(n+1)}(\xi)}{n!}(x-\xi )^{n}[/latex];

Таким образом мы получаем следующую формулу:
[latex]\frac{0-r_{n}(x_{0},x)}{\varphi(x)-\varphi(x_{0})}= -\frac{f^{(n+1)}(\xi)}{n!\varphi(\xi)}(x-\xi)^{n}[/latex]. Отсюда
[latex]r_{n}(x_{0},x)=\frac{\varphi(x)-\varphi(x_{0})}{\varphi'(\xi)n!}*f^{(n+1)}(\xi)*(x-\xi)^{n}[/latex].
[latex]\blacksquare[/latex]

 

 

Список литературы:

1. Конспект лекций по математическому анализу (Лысенко З.М.)

2. Г.М.Фихтенгольц, Курс дифференциального и интегрального исчисления, том 1, 1962 год, стр. 246-257.

О приближенном вычислении с помощью формулы Тейлора

Если остаток в формуле Тейлора latex |r_{n}(x_{0},x)|< \alpha _{0} &s=1, то формулу Тейлора для многочлена можно записать так:  latex f(x)\approx f(x_{0})+\frac{f'(x_{0})}{1!}(x-x_{0})+\frac{f»(x_{0})}{2!}(x-x_{0})^{2}+…+\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n} &s=1.

Важна форма записи остаточного члена:

latex r_{n}(x_{0},x)=\frac{f^{(n+1)}(\xi )}{(n+1)!}(x-x_{0})^{n+1} &s=1.

latex r_{n}(x_{0},x) &s=1 — определяет погрешность формулы. Если же latex f(x) &s=1 вычисляется по формуле при конкретном числовом значении latex x &s=1, то может оказаться, что слагаемые в этой формуле сами вычисляются приближённо. Тогда погрешность результата будет состоять из погрешности слагаемых и погрешности формулы. Если вычислять все слагаемые с одинаковой точностью latex \alpha _{0} &s=1 (погрешностью формулы), то общая погрешность результата равна latex (n+2)\alpha _{0} &s=1.

Пусть latex \alpha &s=1 — заранее известная точность результата. Тогда следует преобразовать latex \alpha _{0} &s=1 так, чтобы обеспечить выполнение неравенства   latex (n+2)\alpha _{0}\leq\alpha &s=1, то есть latex \alpha_{0}\leq\frac{\alpha}{n+2} &s=1. При достаточно малых latex n &s=1, например, latex n\leq8 &s=1: latex \alpha_{0}=\frac{\alpha}{10}\leq\frac{\alpha}{n+2} &s=1.

Обычно точность вычислений latex \alpha &s=1 задается в виде: latex \alpha=10^{-m} \Rightarrow \alpha_{0}=10^{-(m+1)} &s=1. Это значит, что вычисления нужно проводить с одним запасным знаком. Мы установили, что один запасной знак обеспечит требуемую точность при latex n\leq8 &s=1.

Пример

Вычислить latex e^{0,1} &s=1 с точностью до latex \alpha=0,001=10^{-3} &s=1.

Решение

Оценкой определим, в какой точке удобнее раскладывать исходную функцию (найдём ближайшую к необходимой точку, где известно точное значение функции):

latex 0\leq0,1\leq0,5 \Rightarrow x\in[0;0,5] &s=1

Выпишем формулу Тейлора:

latex e^{x}=1+x+\frac{1}{2}x^{2}+…+\frac{x^{n}}{n!}+\frac{e^{\xi }}{(n+1)!}x^{n+1} &s=1;

Выполним вычисление по формуле Тейлора, разложив функцию в точке latex x_{0}=0 &s=1

Выполним оценку погрешности:

latex r_{n}(0,x)=\left | \frac{e^{\xi }x^{n+1}}{(n+1)!} \right |=\frac{e^{\xi} \left | x \right |^{n+1}}{(n+1)!}\leq\frac{\sqrt{e}x^{n+1}}{(n+1)!} \leq \frac{2x^{n+1}}{(n+1)!} &s=2

Оценим сверху:

latex \frac{2x^{n+1}}{(n+1)!}\leq \frac{1}{10} &s=2

Перенесём 2 в правую часть и выполним обозначение:

latex \frac{x^{n+1}}{(n+1)!}\leq 0.5*10^{-1}\alpha=\frac{\alpha}{20} &s=2.

Эта запись удобна тем, что вычисляя последовательность слагаемых latex U_{k}=\frac{x^{k}}{k!} &s=1 мы имеем возможность одновременно видеть достигнута ли требуемая точность.

По условию:

latex \alpha=10^{-3} &s=1

Подставим в оценку, сделанную ранее:

latex \frac{x^{n+1}}{(n+1)!}\leq 0,00005 &s=2

Для latex U_{k}=\frac{x^{k}}{k!} &s=1 полагаем latex k=0,1,2,… &s=1

latexx=0,1U0=1;U1=0,1;U2=0,005;

latex U_{3}=0,0002; U_{4}=0,00005 &s=1 — выбранное значение latexk подходит.

latex e^{0,1}\approx 1+0,1+0,005+0,0002+0,00005=1,105 &s=1

latex e^{0,1}\approx1,105 &s=1

Неравенство latex \frac{x^{n+1}}{(n+1)!}\leq0,00005 &s=2 оказалось выполненным при latex k=n+1=4 &s=1, latex n=3 &s=1.

Источники:

 

 

Единственность полинома Тейлора

Теорема о единственности полинома Тейлора

  Если существует [latex]f^{(n)}(x_{0})[/latex] и при [latex]x\rightarrow x_{0} [/latex] [latex]f[/latex] представима в виде [latex]f(x)=a_{0}+ [/latex] [latex] a_{1}(x-x_{0})+… [/latex] [latex] +a_{n}(x-x_{0})^{n}+ [/latex] [latex] O((x-x_{0})^{n})[/latex], то многочлен [latex]A=a_{0}+[/latex][latex]a_{1}(x-x_{0})+… [/latex] [latex] +a_{n}(x-x_{0})^{n}[/latex] и будет многочленом Тейлора в точке [latex]x_{0}[/latex], то есть [latex]a_{k}=\cfrac{f^{(k)}(x_{0})}{k!}[/latex].

Доказательство.

latexf(x)=f(x0)+ latexf(x0)1!(xx0)+ latex+f(n)(x0)n!(xx0)n+ latex O((x-x_{0})^{n}) &s=1 .

Приравниваем:

latexf(x0)+ latexf(x0)1!(xx0)+ latex+f(n)(x0)n!(xx0)n+ latexO((xx0)n)= latexa0+a1(xx0)+ latex+an(xx0)n+ latex O((x-x_{0})^{n}) &s=1.

Берем предел обеих частей при [latex]x\rightarrow x_{0} [/latex]. Получаем, что:

latex \frac{f'(x_{0})}{1!}(x-x_{0})\rightarrow 0 &s=1 ;

latex \frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}\rightarrow 0 &s=1 ;

latex O((x-x_{0})^{n})\rightarrow 0 &s=1 ;

latex a_{1}(x-x_{0})\rightarrow 0 &s=1 ;

latex a_{n}(x-x_{0})^{n}\rightarrow 0 &s=1 ;

latex O((x-x_{0})^{n})\rightarrow 0 &s=1 ;

latex f(x_{0})=a_{0} &s=1 .

Отбрасываем первые слагаемые в обеих частях уравнения:

[latex] \cfrac{f'(x_{0})}{1!}(x-x_{0})+…[/latex][latex]+\cfrac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+[/latex][latex]O((x-x_{0})^{n})=[/latex][latex] a_{1}(x-x_{0})+…[/latex][latex]+a_{n}(x-x_{0})^{n}+[/latex][latex]O((x-x_{0})^{n})\mid /(x-x_{0}) .[/latex]

[latex] \cfrac{f'(x_{0})}{1!}+…[/latex][latex]+\cfrac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n-1}+[/latex][latex]O((x-x_{0})^{n-1})=[/latex][latex]a_{1}+[/latex][latex]a_{2}(x-x_{0})+…[/latex][latex]+a_{n}(x-x_{0})^{n-1}+[/latex][latex]O((x-x_{0})^{n-1})\mid \lim\limits_{x\rightarrow x_{0}}(\cdot ) .[/latex]

Получаем:

latex \cfrac{f'(x_{0})}{1!}=a_{1} &s=1.

Проделываем те же действия, что и ранее, получаем:

latex a_{k}=\cfrac{f^{(k)}(x_{0})}{k!} &s=1.

Следовательно разложение по формуле Тейлора однозначно.

Замечание:

Пусть [latex]f(x)[/latex] — бесконечно дифференцируема в точке [latex]0[/latex].

  1. Если функция [latex]f(x)[/latex] — четная, то [latex]f'[/latex] — нечетная, [latex]f»'[/latex] — нечетная, …, [latex]f^{(2n+1)}[/latex] — нечетная, а так как нечетная функция в 0 всегда принимает значение, равное 0, то [latex]f'(0)=f»'(0)=…[/latex] [latex] =f^{(2n+1)}(0)=0[/latex].
  2. Если функция [latex]f(x)[/latex] — нечетная, то [latex]f»[/latex] — нечетная, …, [latex]f^{(2n)}[/latex] — нечетная, а так как нечетная функция в 0 всегда принимает значение, равное 0, то [latex]f»(0)=…= f^{(2n)}(0)=0[/latex].

Вывод:

Если [latex]f(x)[/latex] — четная, то формула Тейлора будет для нее содержать только четные степени, если [latex]f(x)[/latex] — нечетная, то формула Тейлора будет разлагаться только по нечетным степеням.

Источники:

Тест по теме: единственность полинома Тейлора

Проверьте себя на знание теоретического материала по теме: единственность полинома Тейлора.


Таблица лучших: Тест по теме: единственность полинома Тейлора

максимум из 3 баллов
Место Имя Записано Баллы Результат
Таблица загружается
Нет данных